Influence of hyperuricemia at the efficacy of hypolypidemic therapy in patients with chronic forms of ischemic heart disease


DOI: https://dx.doi.org/10.18565/therapy.2024.6.53-65

Sergeeva O.S., Salamatova V.N., Kotova Yu.A., Shevtsov A.N., Shevtsova V.I.

N.N. Burdenko Voronezh State Medical University of the Ministry of Healthcare of Russia
Abstract. Hyperlipidemia is one of the key factors in the development and progression of chronic forms of coronary heart disease (CHD). Reducing high levels and maintaining target levels of low-density lipoproteins (LDL-C) has an important medical and social problem. The efficacy of lipid-lowering therapy can be influenced by various aspects, including elevated level of uric acid (UA), which is often found in patients with CHD.
The aim: to estimate the effect of hyperuricemia (HU) at the efficacy of lipid-lowering therapy in patients with CHD.
Material and methods. 120 patients with CHD who were treated in the cardiology department of Voronezh regional clinical hospital No. 1 were included in the study. Depending on the presence of HU, all of them were divided into 2 groups: 1st group included 60 patients with concomitant HU, 2nd – 60 patients without it. During 6-month of prospective observational study, the efficacy of lipid-lowering therapy and achievement of target LDL levels were assessed basing on values of lipid profile indexes, endothelial dysfunction (ED) and oxidative stress (OS) markers at all the stages before and after 2, 4 and 6 months of the treatment.
Results. Parameters of lipid profile had statistically significant differences between the groups both before the start and throughout the course of therapy. At the same time, higher values of total cholesterol, LDL cholesterol, triglycerides and low high-density lipoprotein cholesterol (HDL cholesterol) were specific for patients having CHD and HU. Positive dynamics in lipid profile indexes was observed in both groups, regardless of the presence of HU. Intergroup differences in ED and OS markers had different degree of severity during the study.
Conclusion. A high level of sUA in the blood in patients with CIHD was associated with more pronounced lipid metabolism disorders and manifestations of OS and ED. HU can reduce the effectiveness of lipid-lowering therapy in patients with CHD, as well as delay the time for achieving target control values.

Literature


1. Миронова О.Ю. Гиперурикемия: современные особенности терапии у пациентов с сердечно-сосудистыми заболеваниями. Евразийский кардиологический журнал. 2022; (2): 72–78. (Mironova O.Yu. Hyperuricemia: contemporary treatment in patients with cardiovascular disease. Yevraziyskiy kardiologicheskiy zhurnal = Eurasian Heart Journal. 2022; (2): 72–78 (In Russ.)).


https://doi.org/10.38109/2225-1685-2022-2-72-78. EDN: ZWIMWH.


2. Maloberti A., Bossi I., Tassistro E. et al. Uric acid in chronic coronary syndromes: Relationship with coronary artery disease severity and left ventricular diastolic parameter. Nutr Metab Cardiovasc Dis. 2021; 31(5): 1501–8.


https://doi.org/10.1016/j.numecd.2021.01.023. PMID: 33810962.


3. Borghi C., Domienik-Karłowicz J., Tykarski A. et al. Expert consensus for the diagnosis and treatment of patients with hyperuricemia and high cardiovascular risk: 2023 update. Cardiol J. 2024; 31(1): 1–14.


https://doi.org/10.5603/cj.98254. PMID: 38155566. PMCID: PMC10919576.


4. Virdis A., Masi S., Casiglia E. et al. Identification of the uric acid thresholds predicting an increased total and cardiovascular mortality over 20 years. Hypertension. 2020; 75(2): 302–8.


https://doi.org/10.1161/hypertensionaha.119.13643. PMID: 31813345.


5. Yanai H., Adachi H., Hakoshima M., Katsuyama H. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease. Int J Mol Sci. 2021; 22(17): 9221.


https://doi.org/10.3390/ijms22179221. PMID: 34502127.


6. Saito Y., Nakayama T., Sugimoto K. et al. Relation of lipid content of coronary plaque to level of serum uric acid. Am J Cardiol. 2015; 116(9): 1346–50.


https://doi.org/10.1016/j.amjcard.2015.07.059. PMID: 26381534.


7. Ando K., Takahashi H., Watanabe T. et al. Impact of serum uric acid levels on coronary plaque stability evaluated using integrated backscatter intravascular ultrasound in patients with coronary artery disease. J Atheroscler Thromb. 2016; 23(8): 932–39.


https://doi.org/10.5551/jat.33951. PMID: 26947600. PMCID: PMC7399302.


8. Centola M., Maloberti A., Castini D. et al. Impact of admission serum acid uric levels on in-hospital outcomes in patients with acute coronary syndrome. Eur J Intern Med. 2020; 82: 62–67.


https://doi.org/10.1016/j.ejim.2020.07.013. PMID: 32709548.


9. Polito L., Bortolotti M., Battelli M.G., Bolognesi A. Xanthine oxidoreductase: A leading actor in cardiovascular disease drama. Redox Biol. 2021; 48: 102195.


https://doi.org/10.1016/j.redox.2021.102195. PMID: 34844041. PMCID: PMC8636850.


10. Furuhashi M. New insights into purine metabolism in metabolic diseases: Role of xanthine oxidoreductase activity. Am J Physiol Endocrinol Metab. 2020; 319(5): E827–E834.


https://doi.org/10.1152/ajpendo.00378.2020. PMID: 32893671.


11. He B., Nie Q., Wang F. et al. Hyperuricemia promotes the progression of atherosclerosis by activating endothelial cell pyroptosis via the ROS/NLRP3 pathway. J Cell Physiol. 2023; 238(8): 1808–22.


https://doi.org/10.1002/jcp.31038. PMID: 37475193.


12. Tsigkou V., Oikonomou E., Anastasiou A. et al. Molecular mechanisms and therapeutic implications of endothelial dysfunction in patients with heart failure. Int J Mol Sci. 2023; 24(5): 4321.


https://doi.org/10.3390/ijms24054321. PMID: 36901752. PMCID: PMC10001590.


13. Furuhashi M., Higashiura Y., Koyama M. et al. Independent association of plasma xanthine oxidoreductase activity with hypertension in nondiabetic subjects not using medication. Hypertens Res. 2021; 44(9): 1213–20.


https://doi.org/10.1038/s41440-021-00679-1. PMID: 34117403.


14. Mudgal R., Singh S. Xanthine oxidoreductase in the pathogenesis of endothelial dysfunction: An update. Curr Hypertens Rev. 2024; 20(1): 10–22.


https://doi.org/10.2174/0115734021277772240124075120. PMID: 38318826.


15. Чазова И.Е., Жернакова Ю.В., Кисляк О.А. с соавт. Консенсус по ведению пациентов с гиперурикемией и высоким сердечно-сосудистым риском: 2022. Системные гипертензии. 2022; 19(1): 5–22. (Chazova I.E., Zhernakova Yu.V., Kislyak O.A. et al. Consensus on patients with hyperuricemia and high cardiovascular risk treatment: 2022. Sistemnyye gipertenzii = Systemic Hypertension. 2022; 19(1): 5–22 (In Russ.)).


https://doi.org/10.38109/2075-082X-2022-1-5-22. EDN: HBLVVV.


16. Аникин Д.А., Демко И.В., Соловьева И.А. с соавт. Место свободнорадикального окисления в патогенезе метаболического синдрома. Профилактическая медицина. 2022; 25(11): 98–104. (Anikin D.A., Demko I.V., Solovyeva I.A. et al. Free radical oxidation in the pathogenesis of metabolic syndrome. Profilakticheskaya meditsina = Russian Journal of Preventive Medicine. 2022; 25(11): 98–104 (In Russ.)).


https://doi.org/10.17116/profmed20222511198. EDN: UMBPHM.


17. Gherghina M.E., Peride I., Tiglis M. et al. Uric acid and oxidative stress-relationship with cardiovascular, metabolic, and renal impairment. Int J Mol Sci. 2022; 23(6): 3188. https://doi.org/10.3390/ijms23063188. PMID: 35328614. PMCID: PMC8949471.


18. Либов И.А., Моисеева Ю.Н., Комарова А.Г. Гиперурикемия как фактор риска сердечно-сосудистых осложнений у пациентов с артериальной гипертонией. Российский кардиологический журнал. 2022; 27(9): 5194. (Libov I.A., Moiseeva Yu.N., Komarova A.G. Hyperuricemia as a risk factor for cardiovascular events in hypertensive patients. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2022; 27(9): 5194 (In Russ.)).


https://doi.org/10.15829/1560-4071-2022-5194. EDN: CEFRHM.


19. Medina-Leyte D.J., Zepeda-García O., Domínguez-Perez M. et al. Endothelial dysfunction, inflammation and coronary artery disease: Potential biomarkers and promising therapeutical approaches. Int J Mol Sci. 2021; 22(8): 3850.


https://doi.org/10.3390/ijms22083850. PMID: 33917744. PMCID: PMC8068178.


20. Hartopo A.B., Fachiroh J., Puspitawati I., Dewi F.S.T. Serum endothelin-1 level positively correlates with waist and hip circumferences in stable coronary artery disease patients. Rev Cardiovasc Med. 2021; 22(3): 919–24.


https://doi.org/10.31083/j.rcm2203099. PMID: 34565091.


21. Chen J., Chen M.H., Guo Y.L. et al. Plasma big endothelin-1 levels at admission and future cardiovascular outcomes: a cohort study in patients with stable coronary artery disease. Int J Cardiol. 2017; 230: 76–79.


https://doi.org/10.5551/jat.26401. PMID: 28038820.


22. Vilcea A., Darabantiu D., Puschita M. The importance of a new cardiovascular risk factor – Asymmetric dimethylarginine. Maedica (Bucur). 2020; 15(3): 373–75.


https://doi.org/10.26574/maedica.2020.15.3.373. PMID: 33312254. PMCID: PMC7726498.


23. Liu X., Xu X., Shang R., Chen Y. Asymmetric dimethylarginine (ADMA) as an important risk factor for the increased cardiovascular diseases and heart failure in chronic kidney disease. Nitric Oxide. 2018; 78: 113–20.


https://doi.org/10.1016/j.niox.2018.06.004. PMID: 29928990. PMCID: PMC6301111.


24. Zhu Y., Pandya B.J., Choi H.K. Comorbidities of gout and hyperuricemia in the US general population: NHANES 2007–2008. Am J Med. 2012; 125(7): 679–687.e1.


https://doi.org/10.1016/j.amjmed.2011.09.033. PMID: 22626509.


25. Zhang S., Liu Q., Chang M. et al. Chemotherapy impairs ovarian function through excessive ROS-induced ferroptosis. Cell Death Dis. 2023; 14(5): 340.


https://doi.org/10.1038/s41419-023-05859-0. PMID: 37225709. PMCID: PMC10209065.


26. Li X., Lin Y., Wang S. et al. Extracellular superoxide dismutase is associated with left ventricular geometry and heart failure in patients with cardiovascular disease. J Am Heart Assoc. 2020; 9(15): e016862.


https://doi.org/10.1161/jaha.120.016862. PMID: 32750295. PMCID: PMC7792241.


27. Ma S., Lu G., Zhang Q. et al. Extracellular-superoxide dismutase DNA methylation promotes oxidative stress in homocysteine-induced atherosclerosis. Acta Biochim Biophys Sin (Shanghai). 2022; 54(9): 1222–33.


https://doi.org/10.3724/abbs.2022093. PMID: 35866603.


28. Adel M., Elmasry A., El-Nablaway M. et al. Cardioprotective effect of abscisic acid in a rat model of type 3 cardio-renal syndrome: Role of NOX-4, P-53, and HSP-70. Biomed Pharmacother. 2023; 157: 114038.


https://doi.org/10.1016/j.biopha.2022.114038. PMID: 36446241.


29. Akagawa M. Protein carbonylation: molecular mechanisms, biological implications, and analytical approaches. Free Radic Res. 2021; 55(4): 307–20.


https://doi.org/10.1080/10715762.2020.1851027. PMID: 33183115.


30. Panda P., Verma H.K., Lakkakula S. et al. Biomarkers of oxidative stress tethered to cardiovascular diseases. Oxid Med Cell Longev. 2022; 2022: 9154295.


https://doi.org/10.1155/2022/9154295. PMID: 35783193.


31. Kehm R., Baldensperger T., Raupbach J., Höhn A. Protein oxidation – Formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biol. 2021; 42: 101901.


https://doi.org/10.1016/j.redox.2021.101901. PMID: 33744200.


About the Autors


Olga S. Sergeeva, MD, assistant at the Department of simulation training, N.N. Burdenko Voronezh State Medical University of the Ministry of Healthcare of Russia. Address: 394036, Voronezh, 10 Studencheskaya St.
E-mail: kotova_u@inbox.ru
ORCID: https://orcid.org/0000-0001-9209-7396
Valeria N. Salamatova, 6th year student of the Faculty of general medicine, N.N. Burdenko Voronezh State Medical University of the Ministry of Healthcare of Russia. Address: 394036, Voronezh, 10 Studencheskaya St.
E-mail: valeriyasalamatova@gmail.com
ORCID: https://orcid.org/0009-0009-3171-2880
Yulia A. Kotova, MD, Dr. Sci. (Medicine), associate professor, head of the Department of clinical laboratory diagnostics, N.N. Burdenko Voronezh State Medical University of the Ministry of Healthcare of Russia. Address: 394036, Voronezh, 10 Studencheskaya St.
E-mail: kotova_u@inbox.ru
ORCID: https://orcid.org/0000-0003-0236-2411
Artem N. Shevtsov, MD, PhD (Medicine), associate professor of the Department of operative surgery with topographic anatomy, N.N. Burdenko Voronezh State Medical University of the Ministry of Healthcare of Russia. Address: 394036, Voronezh, 10 Studencheskaya St.
E-mail: shan-87@yandex.ru
ORCID: https://orcid.org/0000-0001-8641-2847
Veronika I. Shevtsova, MD, PhD (Medicine), associate professor of the Department of polyclinic therapy, N.N. Burdenko Voronezh State Medical University of the Ministry of Healthcare of Russia. Address: 394036, Voronezh, 10 Studencheskaya St.
E-mail: shevvi@yandex.ru
ORCID: https://orcid.org/0000-0002-1707-436X


Similar Articles


Бионика Медиа