DOI: https://dx.doi.org/10.18565/therapy.2022.6.64-75
Alieva A.M., Teplova N.V., Ettinger O.A., Reznik E.V., Baykova I.E., Sarakaeva L.R., Shnahova L.M., Arakelyan R.A., Valiev R.K., Nikitin I.G.
1) N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, Moscow; 2) V.A. Almazov National Medical Research Center of the Ministry of Healthcare of Russia, Saint Petersburg; 3) I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia; 4) A.S. Loginov Moscow Clinical Research Center of the Healthcare Department of Moscow
1. Roth G.A, Johnson C., Abajobir A. et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol. 2017; 70(1): 1–25. https://dx.doi.org/10.1016/j.jacc.2017.04.052. 2. Ye J., Wang Y., Wang Z. et al. Roles and mechanisms of interleukin-12 family members in cardiovascular diseases: Opportunities and challenges. Front Pharmacol. 2020; 11: 129. https://dx.doi.org/10.3389/fphar.2020.00129. 3. Алиева А.М., Байкова И.Е., Кисляков В.А. с соавт. Галектин-3: диагностическая и прогностическая ценность определения у пациентов с хронической сердечной недостаточностью. Терапевтический архив. 2019; 91(9): 145–149. [Alieva A.M., Baykova I.E., Kislyakov V.A. et al. Galactin-3: diagnostic and prognostic value in patients with chronic heart failure. Terapevticheskiy arkhiv = Therapeutic Archive. 2019; 91(9): 145–149 (In Russ.)]. https://dx.doi.org/10.26442/00403660.2019.09.000226. EDN: NSZGZS. 4. Алиева А.М., Пинчук Т.В., Алмазова И.И. с соавт. Клиническое значение определения биомаркера крови ST2 у больных с хронической сердечной недостаточностью. Consilium Medicum. 2021; 23(6): 522–526. [Alieva A.M., Pinchuk T.V., Almazova I.I., et al. Сlinical value of blood biomarker ST2 in patients with chronic heart failure. Consilium Medicum. 2021; 23(6): 522–526 (In Russ.)]. https://dx.doi.org/10.26442/20751753.2021.6.200606. EDN: ZWUXUD. 5. Алиева А.М., Алмазова И.И., Пинчук Т.В. с соавт. Фракталкин и сердечно-сосудистые заболевания. Consilium Medicum. 2020; 22(5): 83–86. [Alieva A.M., Almazova I.I., Pinchuk T.V. et al. Fractalkin and cardiovascular disease. Consilium Medicum. 2020; 22(5): 83–86 (In Russ.)]. https://dx.doi.org/10.26442/20751753.2020.5.200186. EDN: IGGQHI. 6. Yan J., Smyth M.J., Teng M.W.L. Interleukin (IL)-12 and IL-23 and their conflicting roles in cancer. Cold Spring Harb Perspect Biol. 2018; 10(7): a028530. https://dx.doi.org/10.1101/cshperspect. a028530. 7. Thompson A., Orr S.J. Emerging IL-12 family cytokines in the fight against fungal infections. Cytokine. 2018; 111: 398–407.https://dx.doi.org/10.1016/j.cyto.2018.05.019. 8. Gotthardt D., Trifinopoulos J., Sexl V. et al. JAK/STAT cytokine signaling at the crossroad of NK cell development and maturation. Front Immunol. 2019; 10: 2590. https://dx.doi.org/10.3389/fimmu.2019.02590. 9. Ullrich K.A., Schulze L.L., Paap E.M. et al. Immunology of IL-12: An update on functional activities and implications for disease. EXCLI J. 2020; 19: 1563–89. https://dx.doi.org/10.17179/excli2020-3104. 10. Wei X., Zhang J., Gu Q. et al. Reciprocal expression of IL-35 and IL-10 defines two distinct effector Treg subsets that are required for maintenance of immune tolerance. Cell Rep. 2017; 21(7): 1853–69. https://dx.doi.org/10.1016/j.celrep.2017.10.090. 11. Andrews C., McLean M.H., Durum S.K. Interleukin-27 as a novel therapy for inflammatory bowel disease: a critical review of the literature. Inflamm Bowel Dis. 2016; 22(9): 2255–64. https://dx.doi.org/10.1097/MIB.0000000000000818. 12. Sun L., He C., Nair L. et al. Interleukin 12 (IL-12) family cytokines: role in immune pathogenesis and treatment of CNS autoimmune disease. Cytokine. 2015; 75 (2): 249–55. https://dx.doi.org/10.1016/j.cyto.2015.01.030. 13. Rahman K., Fisher E.A. Insights from pre-clinical and clinical studies on the role of innate inflammation in atherosclerosis regression. Front Cardiovasc Med. 2018; 5: 32. https://dx.doi.org/10.3389/fcvm.2018.00032. 14. Jaaskelainen A.E., Seppala S., Kakko T. et al. Systemic treatment with neuropeptide Y receptor Y1-antagonist enhances atherosclerosis and stimulates IL-12 expression in ApoE deficient mice. Neuropeptides. 2013; 47(2): 67–73.https://dx.doi.org/10.1016/j.npep.2012.11.001. 15. Hauer A.D., Uyttenhove C., de Vos P. et al. Blockade of interleukin-12 function by protein vaccination attenuates atherosclerosis. Circulation. 2005; 112(7): 1054–62. https://dx.doi.org/10.1161/CIRCULATIONAHA.104.533463. 16. Davenport P., Tipping P.G. The role of interleukin-4 and interleukin-12 in the progression of atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol. 2003; 163(3): 1117–25. https://dx.doi.org/10.1016/S0002-9440(10)63471-2. 17. Kan X., Wu Y., Ma Y. et al. Deficiency of IL-12p35 improves cardiac repair after myocardial infarction by promoting angiogenesis. Cardiovasc Res. 2016; 109(2): 249–59. https://dx.doi.org/10.1093/cvr/cvv255. 18. Huang Y., Hu H., Liu L. et al. Interleukin-12p35 deficiency reverses the Th1/Th2 imbalance, aggravates the Th17/Treg imbalance, and ameliorates atherosclerosis in ApoE-/- mice. Mediators Inflamm. 2019; 2019: 3152040. https://dx.doi.org/10.1155/2019/3152040. 19. Wang J., Zhao P., Gao Y. et al. The effects of anti-IL-23p19 therapy on atherosclerosis development in ApoE-/- mice. J Interferon Cytokine Res. 2019; 39(9): 564–71. https://dx.doi.org/10.1089/jir.2019.0050. 20. Engelbertsen D., Depuydt M.A.C., Verwilligen R.A.F. et al. IL-23R deficiency does not impact atherosclerotic plaque development in mice. J Am Heart Assoc. 2018; 7(8): e008257. https://dx.doi.org/10.1161/JAHA.117.008257. 21. Fatkhullina A.R., Peshkova I.O., Dzutsev A. et al. An interleukin-23-interleukin-22 axis regulates intestinal microbial homeostasis to protect from diet-induced atherosclerosis. Immunity. 2018; 49(5): 943–57. https://dx.doi.org/10.1016/j.immuni.2018.09.011. 22. Subramanian M., Thorp E., Tabas I. Identification of a non-growth factor role for GM-CSF in advanced atherosclerosis: Promotion of macrophage apoptosis and plaque necrosis through IL-23 signaling. Circ Res. 2015; 116(2): e13–e24.https://dx.doi.org/10.1161/CIRCRESAHA.116.304794. 23. Koltsova E.K., Kim G., Lloyd K.M. et al. Interleukin-27 receptor limits atherosclerosis in Ldlr-/- mice. Circ Res. 2012; 111(10): 1274–85. https://dx.doi.org/10.1161/CIRCRESAHA.112.277525. 24. Tetsuaki H., Hiromitsu H., Yoshiyuki M. et al. Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice. Am J Physiol Heart Circ Physiol. 2013; 305(3): H420–29. https://dx.doi.org/10.1152/ajpheart.00198.2013. 25. Ryu H., Lim H., Choi G. et al. Atherogenic dyslipidemia promotes autoimmune follicular helper T cell responses via IL-27. Nat Immunol. 2018; 19(6): 583–93. https://dx.doi.org/10.1038/s41590-018-0102-6. 26. Wang B., Dai S., Dong Z. et al. The modulation of endoplasmic reticulum stress by chemical chaperone up-regulates immune negative cytokine IL-35 in apolipoprotein E-deficient mice. PLOS One. 2014; 9(1): e87787. https://dx.doi.org/10.1371/journal.pone.0087787. 27. Gorzelak-Pabis P., Chalubinski M., Wojdan K. et al. Increased plasma concentrations of interleukin 35 in patients with coronary artery disease. Arch Med Sci. 2017; 13(4): 778–84. https://dx.doi.org/10.5114/aoms.2016.63751. 28. Li X., Shao Y., Sha X. et al. IL-35 (interleukin-35) suppresses endothelial cell activation by inhibiting mitochondrial reactive oxygen species-mediated site-specific acetylation of H3K14 (Histone 3 Lysine 14). Arterioscler Thromb Vasc Biol. 2018; 38(3): 599–609. https://dx.doi.org/10.1161/ATVBAHA.117.310626. 29. Tao L., Zhu J., Chen Y. et al. IL-35 improves Treg-mediated immune suppression in atherosclerotic mice. Exp Ther Med. 2016; 12(4): 2469–76. https://dx.doi.org/10.3892/etm.2016.3649. 30. Huang Y., Hu H., Liu L. et al. Interleukin-12p35 deficiency reverses the Th1/Th2 imbalance, aggravates the Th17/Treg imbalance, and ameliorates atherosclerosis in ApoE-/- Mice. Mediators Inflamm. 2019; 2019: 3152040. https://dx.doi.org/10.1155/2019/3152040. 31. Jia D., Jiang H., Weng X. et al. Interleukin-35 promotes macrophage survival and improves wound healing after myocardial infarction in mice. Circ Res. 2019; 124(9): 1323–36. https://dx.doi.org/10.1161/CIRCRESAHA.118.314569. 32. Liu X., Zhang R., Hou J. et al. Interleukin-35 promotes early endothelialization after stent implantation by regulating macrophage activation. Clin Sci (Lond). 2019; 133(7): 869–84. https://dx.doi.org/10.1042/CS20180879. 33. Posadas-Sanchez R., Vargas-Alarcon G. Innate immunity in coronary disease. The role of interleukin-12 cytokine family in atherosclerosis. Rev Invest Clin. 2018; 70(1): 5–17. https://dx.doi.org/10.24875/RIC.17002335. 34. Chistiakov D.A., Bobryshev Y.V., Orekhov A.N. Heterogeneity of Tregs and the complexity in the IL-12 cytokine family signaling in driving T-cell immune responses in atherosclerotic vessels. Mol Immunol. 2015; 65(1): 133–38.https://dx.doi.org/10.1016/j.molimm.2015.01.013. 35. Зыков М.В., Барбараш О.Л., Кашталап В.В. с соавт. Клиническая и прогностическая значимость интерлейкина-12 у пациентов с инфарктом миокарда. Медицинская иммунология. 2011; 13(2–3): 219–226. [Zykov M.V., Barbarash O.L., Kashtalap V.V. et al. Clinical and prognostic significance of interleukin-12 in patients with myocardial infarction. Meditsinskaya immunologiya = Medical Immunology. 2011; 13(2–3): 219–226 (In Russ.)]. https://dx.doi.org/10.15789/1563-0625-2011-2-3-219-226. EDN: NTVCXB. 36. Opstad T.B., Arnesen H., Pettersen A.Å., Seljeflot I. Combined elevated levels of the pro-inflammatory cytokines IL-18 and IL-12 are associated with clinical events in patients with coronary artery disease: an observational study. Metab Syndr Relat Disord. 2016; 14(5): 242–48. https://dx.doi.org/10.1089/met.2015.0130. 37. Abbas A., Gregersen I., Holm S. et al. Interleukin 23 levels are increased in carotid atherosclerosis: possible role for the interleukin 23/interleukin 17 axis. Stroke. 2015; 46 (3): 793–99. https://dx.doi.org/10.1161/STROKEAHA.114.006516. 38. Sun J., Yu H., Liu H. et al. Correlation of pre-operative circulating inflammatory cytokines with restenosis and rapid angiographic stenotic progression risk in coronary artery disease patients underwent percutaneous coronary intervention with drug-eluting stents. J Clin Lab Anal. 2020; 34(3): e23108. https://dx.doi.org/10.1002/jcla.23108. 39. A Shahi H., Shimada K., Miyauchi K. et al. Elevated circulating levels of inflammatory markers in patients with acute coronary syndrome. Int J Vasc Med. 2015; 2015: 805375. https://dx.doi.org/10.1155/2015/805375. 40. Gregersen I., Sandanger O., Askevold E.T. et al. Interleukin 27 is increased in carotid atherosclerosis and promotes NLRP3 inflammasome activation. PLOS One. 2017; 12(11): e0188387. https://dx.doi.org/10.1371/journal.pone.0188387. 41. Lin Y., Huang Y., Lu Z. et al. Decreased plasma IL-35 levels are related to the left ventricular ejection fraction in coronary artery diseases. PLOS One 2012; 7(12): e52490. https://dx.doi.org/10.1371/journal.pone.0052490. 42. Rasa F., Naderi N., Eftekhar E. et al. Vitamin D status in coronary artery disease: Association with IL-35 and TGF-β1 and disease severity. Endocr Metab Immune Disord Drug Targets. 2018; 18(5): 522–29. https://dx.doi.org/10.2174/1871530318666180426101756. 43. Zhu Z., Zhang Y., Ye J. et al. IL-35 promoted STAT3 phosphorylation and IL-10 production in B cells, but its production was reduced in patients with coronary artery diseases. Hum Immunol. 2018; 79(12): 869–75. https://dx.doi.org/10.1016/j.humimm.2018.10.009. 44. Zhang M., Cai Z.R., Zhang B. et al. Functional polymorphisms in interleukin-23 receptor and susceptibility to coronary artery disease. DNA Cell Biol. 2014; 33(12): 891–97. https://dx.doi.org/10.1089/dna.2014.2573. 45. Posadas-Sanchez R., Perez-Hernandez N., Rodríguez-Perez J.M. et al. Interleukin-27 polymorphisms are associated with premature coronary artery disease and metabolic parameters in the Mexican population: the genetics of atherosclerotic disease (GEA) Mexican study. Oncotarget. 2017; 8(38): 64459–70. https://dx.doi.org/10.18632/oncotarget.16223. 46. Vargas-Alarcon G., Perez-Hernández N., Rodríguez-Perez J.M. et al. Interleukin 27 polymorphisms, their association with insulin resistance and their contribution to subclinical atherosclerosis. The GEA Mexican study. Cytokine. 2019; 114: 32–37.https://dx.doi.org/10.1016/j.cyto.2018.11.028. 47. Li H., Liu Y.X., Huang J.Y. et al. Analysis for interaction between interleukin-35 genes polymorphisms and risk factors on susceptibility to coronary heart disease in the Chinese Han population. BMC Cardiovasc Disord. 2021; 21(1): 6.https://dx.doi.org/10.1186/s12872-020-01811-8. 48. Davis V.A., Persidskaia R.N., Baca-Regen L.M. et al. Cytokine pattern in aneurysmal and occlusive disease of the aorta. J Surg Res. 2001; 101(2): 152–56. https://dx.doi.org/10.1006/jsre.2001.6281. 49. Ye J., Wang Y., Wang Z. et al. Circulating Th1, Th2, Th9, Th17, Th22, and Treg levels in aortic dissection patients. Mediators Inflamm. 2018; 2018: 5697149. https://dx.doi.org/10.1155/2018/5697149. 50. Peshkova I.O., Aghayev T., Fatkhullina A.R. et al. IL-27 receptor-regulated stress myelopoiesis drives abdominal aortic aneurysm development. Nat Commun. 2019; 10(1): 5046. https://dx.doi.org/10.1038/s41467-019-13017-4. 51. Schanze N., Bode C., Duerschmied D. Platelet contributions to myocardial ischemia/reperfusion injury. Front Immunol. 2019; 10: 1260. https://dx.doi.org/10.3389/fimmu.2019.01260. 52. Zhang A., Mao X., Li L. et al. Necrostatin-1 inhibits Hmgb1-IL-23/IL-17 pathway and attenuates cardiac ischemia reperfusion injury. Transpl Int. 2014; 27(10): 1077–85. https://dx.doi.org/10.1111/tri.12349. 53. Zhu H., Cui D., Liu K. et al. Long pentraxin PTX3 attenuates ischemia reperfusion injury in a cardiac transplantation model. Transpl Int. 2014; 27(1): 87–95. https://dx.doi.org/10.1111/tri.12197. 54. Hu X., Ma R., Lu J. et al. IL-23 promotes myocardial I/R injury by increasing the inflammatory responses and oxidative stress reactions. Cell Physiol Biochem. 2016; 38(6): 2163–72. https://dx.doi.org/10.1159/000445572. 55. Liao Y., Hu X., Guo X. et al. Promoting effects of IL 23 on myocardial ischemia and reperfusion are associated with increased expression of IL 17A and upregulation of the JAK2 STAT3 signaling pathway. Mol Med Rep. 2017; 16(6): 9309–16.https://dx.doi.org/10.3892/mmr.2017.7771. 56. Li Y., Zhang C., Wu Y. et al. Interleukin-12p35 deletion promotes CD4 T-cell-dependent macrophage differentiation and enhances angiotensin II-Induced cardiac fibrosis. Arterioscler Thromb Vasc Biol. 2012; 32(7): 1662–74.https://dx.doi.org/10.1161/ATVBAHA.112.249706. 57. Savvatis K., Pappritz K., Becher P.M. et al. Interleukin-23 deficiency leads to impaired wound healing and adverse prognosis after myocardial infarction. Circ Heart Fail. 2014; 7(1): 161–71. https://dx.doi.org/10.1161/CIRCHEARTFAILURE.113.000604. 58. Yan X., Shichita T., Katsumata Y. et al. Deleterious effect of the IL-23/IL-17A axis and γδT cells on left ventricular remodeling after myocardial infarction. J Am Heart Assoc. 2012; 1(5): e004408. https://dx.doi.org/10.1161/JAHA.112.004408. 59. Ye J., Wang Y., Wang Z. et al. Interleukin-12p35 deficiency enhances mitochondrial dysfunction and aggravates cardiac remodeling in aging mice. Aging (Albany NY). 2020; 12(1): 193–203. https://dx.doi.org/10.18632/aging.102609. 60. Lappegard K.T., Pop-Purceleanu M., van Heerde W. et al. Improved neurocognitive functions correlate with reduced inflammatory burden in atrial fibrillation patients treated with intensive cholesterol lowering therapy. J Neuroinflammation. 2013; 10: 78.https://dx.doi.org/10.1186/1742-2094-10-78. 61. Chen Y., Zeng J., Zhang R. et al. Effect of interleukin-27 genetic variants on atrial fibrillation susceptibility. Genet Test Mol Biomarkers. 2017; 21(2): 97–101. https://dx.doi.org/10.1089/gtmb.2016.0219. 62. Sun F., Guo Z., Zhang C. et al. LncRNA NRON alleviates atrial fibrosis through suppression of M1 macrophages activated by atrial myocytes. Biosci Rep. 2019; 39(11): BSR20192215. https://dx.doi.org/10.1042/BSR20192215. 63. Zha X., Yue Y., Dong N., Xiong S. Endoplasmic reticulum stress aggravates viral myocarditis by raising inflammation through the IRE1-associated NF-κB pathway. Can J Cardiol. 2015; 31(8): 1032–40. https://dx.doi.org/10.1016/j.cjca.2015.03.003. 64. Miteva K., Pappritz K., El-Shafeey M. et al. Mesenchymal stromal cells modulate monocytes trafficking in coxsackievirus B3-induced myocarditis. Stem Cells Transl Med. 2017; 6(4): 1249–61. https://dx.doi.org/10.1002/sctm.16-0353. 65. Jenke A., Holzhauser L., Lobel M. et al. Adiponectin promotes coxsackievirus B3 myocarditis by suppression of acute anti-viral immune responses. Basic Res Cardiol. 2014; 109(3): 408. https://dx.doi.org/10.1007/s00395-014-0408-y. 66. Fairweather D., Yusung S., Frisancho S. et al. IL-12 receptor beta 1 and Toll-like receptor 4 increase IL-1 beta- and IL-18-associated myocarditis and coxsackievirus replication. J Immunol. 2003; 170(9): 4731–37. https://dx.doi.org/10.4049/jimmunol.170.9.4731. 67. Nishio R., Shioi T., Sasayama S., Matsumori A. Carvedilol increases the production of interleukin-12 and interferon-gamma and improves the survival of mice infected with the encephalomyocarditis virus. J Am Coll Cardiol. 2003; 41(2): 340–45.https://dx.doi.org/10.1016/S0735-1097(02)02711-0. 68. Fairweather D., Frisancho-Kiss S., Yusung S.A. et al. IL-12 protects against coxsackievirus B3-induced myocarditis by increasing IFN-gamma and macrophage and neutrophil populations in the heart. J Immunol. 2005; 174(1): 261–69.https://dx.doi.org/10.4049/jimmunol.174.1.261. 69. Sesti-Costa R., Françozo M.C.S., Silva G.K. et al. TLR3 is required for survival following Coxsackievirus B3 infection by driving T lymphocyte activation and polarization: The role of dendritic cells. PLOS One. 2017; 12(10): e0185819.https://dx.doi.org/10.1371/journal.pone.0185819. 70. Jiang N., Liao W., Kuang X. [Effects of emodin on IL-23/IL-17 inflammatory axis, Th17 cells and viral replication in mice with viral myocarditis. Nan Fang Yi Ke Da Xue Xue Bao. 2014; 34(3): 373–78 (In Chinese)]. https://dx.doi.org/10.3969/j.issn.1673-4254.2014.03.17. 71. Kong Q., Gao M., Xue Y. et al. ]Interleukin-17 contributes to the macrophage secretion of interleukin-27 in a murine model of viral myocarditis. Zhonghua Xin Xue Guan Bing Za Zhi. 2014; 42(5): 428–32 (In Chinese)].https://dx.doi.org/10.3760/cma.j.issn.0253-3758.2014.05.017. 72. Zhu H., Lou C., Liu P. Interleukin-27 ameliorates coxsackievirus-B3-induced viral myocarditis by inhibiting Th17 cells. Virol J. 2015; 12: 189. https://dx.doi.org/10.1186/s12985-015-0418-x. 73. Hu Y., Dong C., Yue Y., Xiong S. In vivo delivery of interleukin-35 relieves coxsackievirus-B3-induced viral myocarditis by inhibiting Th17 cells. Arch Virol. 2014; 159(9): 2411–19. https://dx.doi.org/10.1007/s00705-014-2098-z. 74. Ouyang H., Xiang L., Chen J. et al. Significant reduction of peripheral blood interleukin-35 and CD4+EBI3+ T cells, which are negatively correlated with an increase in the plasma IL-17 and cTnI level, in viral myocarditis patients. Cent Eur J Immunol. 2017; 42(1): 91–96. https://dx.doi.org/10.5114/ceji.2016.65892. 75. Xu P., Ji L., Tian S., Li F. Clinical effects of tanshinone IIA sodium sulfonate combined with trimetazidine and levocarnitine in the treatment of AVMC and its effects on serum TNF-α, IL-18 and IL-35. Exp Ther Med. 2018; 16(5): 4070–74. https://dx.doi.org/10.13194/j.issn.1673-842x.2016.02.064. 76. Jenke A., Wilk S., Poller W. et al. Adiponectin protects against Toll-like receptor 4-mediated cardiac inflammation and injury. Cardiovasc Res. 2013; 99(3): 422–31. https://dx.doi.org/10.1093/cvr/cvt118. 77. Панченко Л.Ф., Моисеев В.С., Пирожков С.В. с соавт. Содержание маркеров воспаления и цитокинов в крови больных алкогольной кардиомиопатией и ишемической болезнью сердца на разных стадиях сердечной недостаточности. Кардиология. 2015; 55(3): 41–48. [Panchenko L.F., Moiseev V.S., Pirozhkov S.V. et al. Blood content of markers of inflammation and cytokines in patients with alcoholic cardiomyopathy and ischemic heart disease at various stages of heart failure. Kardiologiia = Cardiology. 2015; 55(3): 41–48 (In Russ.)]. EDN: TPIOPN. 78. Zafra G., Morillo C., Martín J. et al. Polymorphism in the 3’ UTR of the IL12B gene is associated with Chagas’ disease cardiomyopathy. Microbes Infect. 2007; 9(9): 1049–52. https://dx.doi.org/10.1016/j.micinf.2007.04.010. 79. Fairweather D., Frisancho-Kiss S., Yusung S.A. et al. Interferon-gamma protects against chronic viral myocarditis by reducing mast cell degranulation, fibrosis, and the pro-fibrotic cytokines transforming growth factor-beta 1, interleukin-1 beta, and interleukin-4 in the heart. Am J Pathol. 2004; 165(6): 1883–94. https://dx.doi.org/10.1016/S0002-9440(10)63241-5. 80. Myers J.M., Cooper L.T., Kem D.C. et al. Cardiac myosin-Th17 responses promote heart failure in human myocarditis. JCI Insight. 2016; 1(9): e85851. https://dx.doi.org/10.1172/jci.insight.85851. 81. Sonderegger I., Rohn T.A., Kurrer M.O. et al. Neutralization of IL-17 by active vaccination inhibits IL-23-dependent autoimmune myocarditis. Eur J Immunol. 2006; 36(11): 2849–56. https://dx.doi.org/10.1002/eji.200636484. 82. Wu L., Diny N.L., Ong S. et al. Pathogenic IL-23 signaling is required to initiate GM-CSF-driven autoimmune myocarditis in mice. Eur J Immunol. 2016; 46(3): 582–92. https://dx.doi.org/10.1002/eji.201545924. 83. Noutsias M., Rohde M., Goldner K. et al. Expression of functional T-cell markers and T-cell receptor Vbeta repertoire in endomyocardial biopsies from patients presenting with acute myocarditis and dilated cardiomyopathy. Eur J Heart Fail. 2011; 13(6): 611–18. https://dx.doi.org/10.1093/eurjhf/hfr014. 84. Chen Y., Zhang R., Zeng L. et al. IL-27 genetic variation and susceptibility of dilated cardiomyopathy in Chinese Han population. Per Med. 2017; 14(5): 401–8. https://dx.doi.org/10.2217/pme-2017-0013. 85. Ye J., Que B., Huang Y. et al. Interleukin-12p35 knockout promotes macrophage differentiation, aggravates vascular dysfunction, and elevates blood pressure in angiotensin II-infused mice. Cardiovasc Res. 2019; 115(6): 1102–111. https://dx.doi.org/10.1093/cvr/cvy263. 86. Timasheva Y.R., Nasibullin T.R., Zakirova A.N., Mustafina O.E. Association of interleukin-6, interleukin-12, and interleukin-10 gene polymorphisms with essential hypertension in Tatars from Russia. Biochem Genet. 2008; 46(1–2): 64–74.https://dx.doi.org/10.1007/s10528-007-9130-x. 87. Krebs C.F., Lange S., Niemann G. et al. Deficiency of the interleukin 17/23 axis accelerates renal injury in mice with deoxycorticosterone acetate+angiotensin II-induced hypertension. Hypertension. 2014; 63(3): 565–71.https://dx.doi.org/10.1161/HYPERTENSIONAHA.113.02620.. 88. Алиева А.М., Теплова Н.В., Батов М.А. с соавт. Пентраксин-3 – перспективный биологический маркер при сердечной недостаточности: литературный обзор. Consilium Medicum. 2022; 24(1): 53–59. [Alieva A.M., Teplova N.V., Batov M.A. et al. Pentraxin-3 – a promising biological marker in heart failure: literature review. Consilium Medicum. 2022; 24(1): 53–59 (In Russ.)].https://dx.doi.org/10.26442/20751753.2022.1.201382. EDN: MTPNUO. 89. Алиева А.М., Пинчук Т.В., Воронкова К.В. с соавт. Неоптерин – биомаркер хронической сердечной недостаточности (обзор современной литературы). Consilium Medicum. 2021; 23(10): 756–759. [Alieva A.M., Pinchuk T.V., Voronkova K.V. et al. Neopterin is a biomarker of chronic heart failure (review of modern literature). Consilium Medicum. 2021; 23(10): 756–759 (In Russ.)].https://dx.doi.org/10.26442/20751753.2021.10.20111. EDN: SKCMCT. 90. Алиева А.М., Алмазова И.И., Пинчук Т.В. с соавт. Значение копептина в диагностике и прогнозе течения сердечно-сосудистых заболеваний. Клиническая медицина. 2020; 98(3): 203–209. [Alievа A.M., Almazova I.I., Pinchuk T.V. et al. The value of copeptin in the diagnosis and prognosis of cardiovascular diseases. Klinicheskaya meditsina = Clinical Medicine. 2020; 98(3): 203–209 (In Russ.)]. https://dx.doi.org/10.30629/0023-2149-2020-98-3-203-209. EDN: IBOPWG. 91. Алиева А.М., Резник Е.В., Гасанова Э.Т. с соавт. Клиническое значение определения биомаркеров крови у больных с хронической сердечной недостаточностью. Архивъ внутренней медицины. 2018; 8(5): 333–345. [Aliyeva A.M., Reznik E.V., Hasanova E.T. et al. Clinical value of blood biomarkers in patients with chronic heart failure. Arkhiv vnutrenney meditsiny = The Russian Archives of Internal Medicine. 2018; 8(5): 333–345 (In Russ.)]. https://dx.doi.org/10.20514/2226-6704-2018-8-5-333-345. EDN: YKJWIP.
Amina M. Alieva, PhD in Medicine, associate professor of the Department of hospital therapy No. 2 of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova Str. E-mail: amisha_alieva@mail.ru.
ORCID: https://orcid.org/0000-0001-5416-8579. SPIN-code: 2749-6427
Natalia V. Teplova, Dr. med. habil., professor, head of the Department of clinical pharmacology of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova Str. ORCID: https://orcid.org/0000-0002-7181-4680
Olga A. Ettinger, PhD in Medicine, associate professor of the Department of hospital therapy No. 2 of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova Str. E-mail: olga-oett@mail.ru; ORCID: https://orcid.org/0000-0002-1237-3731
Elena V. Reznik, Dr. med. habil., professor, head of the Department of propaedeutics of internal diseases of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, general practitioner, cardiologist, doctor of functional diagnostics, ultrasound diagnostics at City Clinical Hospital No. 31 of the Healthcare Department of Moscow. Address: 117997, Moscow, 1 Ostrovityanova Str. E-mail: elenaresnik@gmail.com. ORCID: https://orcid.org/0000-0001-7479-418X. SPIN-code: 3494-9080. Researcher ID: N-6856-2016
Irina E. Baykova, PhD in Medicine, associate professor of the Department of hospital therapy No. 2 of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova Str. E-mail: 1498553@mail.ru.
ORCID: https://orcid.org/0000-0003-0886-6290. SPIN-code: 3054-8884
Leyla R. Sarakaeva, junior researcher at the Research Laboratory of pediatric endocrinology, postgraduate student and senior laboratory assistant at the Department of pediatric diseases with the clinic, pediatric endocrinologist, V.A. Almazov National Medical Research Center of the Ministry of Healthcare of Russia. Address: 197341, Saint Petersburg, 2 Akkuratova Str.
Lidia M. Shnakhova, doctor at I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University). Адрес: 119435, Moscow, 4/1 Bol`shaya Pirogovskaya Str. E-mail: shnakhova_l_m@staff.sechenov.ru. ORCID: https://orcid.org/0000-0003-3000-0987
Rosa A. Arakelyan, student at the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityanova Str. E-mail: Elmira.sharm@yandex.ru. ORCID: https://orcid.org/0000-0002-2500-197X
Ramiz K. Valiev, PhD, head of the Department of oncosurgery No. 2, A.S. Loginov Moscow Clinical Research Center of the Healthcare Department of Moscow. Address: 111123, Moscow, 86 Entuziastov Highway. E-mail: Radiosurgery@bk.ru. ORCID: https://orcid.org/0000-0003-1613-3716. SPIN-code: 2855-2867
Igor G. Nikitin, Dr. med. habil., professor, head of the Department of hospital therapy No. 2 of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117997, Moscow, 1 Ostrovityaninova Str. E-mail: igor.nikitin.64@mail.ru. ORCID: https://orcid.org/0000-0003-1699-0881