Association of I/D polymorphism of ACE gene with different course of chronic heart failure and myocardial remodeling in patients with coronary heart disease after coronary artery bypass grafting


DOI: https://dx.doi.org/10.18565/therapy.2024.6.66-75

Magamadov I.S., Skorodumova E.A., Kostenko V.A., Pivovarova L.P., Ariskina O.B., Siverina A.V., Skorodumova E.G.

I.I. Dzhanelidze Saint Petersburg Research Institute of Emergency Medicine
Abstract. Angiotensin converting enzyme (ACE) affects vascular tone, water and sodium resorption in kidneys, and increases oxidative stress and fibrosis. These effects make it one of the most important enzymes of renin-angiotensin-aldosterone system, which plays a key role in chronic heart failure (CHF) pathogenesis.
The aim: to determine the effect of I/D gene polymorphism at myocardial remodeling and peculiarities of CHF clinical course in patients with stable coronary heart disease (CHD) after coronary artery bypass grafting (CABG).
Material and methods. 105 patients with coronary heart disease were included in prospective study. Patients underwent genetic testing to determine I/D polymorphism (rs1799752) of ACE gene, and echocardiography.
Results. Depending on the genotypes of rs1799752 polymorphic variant of ACE gene, patients were divided into two groups. The 1st group included 57 patients with II and ID genotypes (78% male, 22% female patients, average age 63 ± 8 years), the 2nd group included 48 patients with the DD genotype (79% males, 21% females, average age 61 ± 7 years). Unlike the 1st sample, where no statistically significant changes in the volumes and sizes of the left ventricle (LV) were detected, in the 2nd group there was progression of LV remodeling: before CABG, the LV end-diastolic volume was 107.9 ± 5.8 ml, LV end-systolic volume 53.9 ± 4.9 ml, LV end-diastolic size 51.1 ± 1.3 mm, LV end-systolic size 36.4 ± 1.8 mm, after 18 months after CABG – 128.3 ± 7.6 ml, 66.1 ± 6.8 ml, 54.1 ± 1.2 mm and 38.3 ± 1.8 mm, respectively (p < 0.05). Quality of life according to the Minnesota scale before CABG in the 1st cohort was 28.8 ± 2.2, after 18 months – 19.9 ± 1.8 points (p < 0.001). In group 2, similar indexes were 27.4 ± 2.7 and 22.4 ± 2.3 points, respectively (p > 0.05). In 18 months of observation, acute decompensation of CHF (ADCHF) was registered in 10.7% of patients in the 1st sample and in 30.4% in the 2nd sample (odds ratio 3.27; 95% confidence interval: 1.05–10.57; p = 0.022).
Conclusion. In patients with DD genotype of ACE gene, an increase of LV size and volume, LV diastolic function deterioration, and also a three-time increase of ADHF-developing chances within 18 months observations after CABG are taking place. Life quality according to Minnesota scale in the long-term period after CABG among patients with II and ID genotypes became significantly better than in patients with the DD genotype.

Literature


1. Howlett J.G., Stebbins A., Petrie M.C. et al. CABG improves outcomes in patients with ischemic cardiomyopathy: 10-year follow-up of the STICH trial. JACC Heart Fail. 2019; 7(10): 878–87.


https://doi.org/10.1016/j.jchf.2019.04.018. PMID: 31521682. PMCID: PMC7375257.


2. Soubrier F., Sois Alhenc-Gelas F., Hubert C. et al. Two putative active centers in human angiotensin I-converting enzyme revealed by molecular cloning. Proc Natl Acad Sci U S A. 1988; 85(24): 9386–90.


https://doi.org/10.1073/pnas.85.24.9386. PMID: 2849100. PMCID: PMC282757.


3. Agerholm-Larsen B., Tybjerg-Hansen A., Schnohr P. et al. Correspondence. Atherosclerosis. 1999; 147(2): 425–27.


https://doi.org/10.1016/S0021-9150(99)00195-1. PMID: 10627272.


4. Rigat B., Hubert C., Alhenc-Gelas F. et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest. 1990; 86(4): 1343–46.


https://doi.org/10.1172/JCI114844. PMID: 1976655. PMCID: PMC296868.


5. Елькина А.Ю., Акимова Н.С., Шварц Ю.Г. Полиморфные варианты генов ангиотензинпревращающего фермента, ангиотензиногена, гена рецептора 1 типа к ангиотензину-ІІ как генетические предикторы развития артериальной гипертонии. Российский кардиологический журнал. 2021; 26(S1): 25–40. (Elkina A.Yu., Akimova N.S., Shvarts Yu.G. Polymorphism of ACE, AGT, AGTR1 genes as genetic predictors of hypertension. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2021; 26(S1): 25–40 (In Russ.)).


https://doi.org/10.15829/1560-4071-2021-41436. EDN: SCHTRS.


6. Kato N., Tatara Y., Ohishi M. et al. Angiotensin-converting enzyme single nucleotide polymorphism is a genetic risk factor for cardiovascular disease: A cohort study of hypertensive patients. Hypertens Res. 2011; 34(6): 728–34.


https://doi.org/10.1038/hr.2011.28. PMID: 21412245.


7. Deng Y., Rapp J.P. Cosegregation of blood pressure with angiotensin converting enzyme and atrial natriuretic peptide receptor genes using Dahl salt-sensitive rats. Nat Genet. 1992; 1(4): 267–72.


https://doi.org/10.1038/ng0792-267. PMID: 1363813.


8. Hadjadj S., Belloum R., Bouhanick B. et al. Prognostic value of angiotensin-I converting enzyme I/D polymorphism for nephropathy in type 1 diabetes mellitus. J Am Soc Nephrol. 2001; 12(3): 541–49.


https://doi.org/10.1681/ASN.V123541. PMID: 11181802.


9. Isbir S.C., Tekeli A., Ergen A. et al. Genetic polymorphisms contribute to acute kidney injury after coronary artery bypass grafting. Heart Surg Forum. 2007; 10(6): E439–E444.


https://doi.org/10.1532/HSF98.20071117. PMID: 17921131.


10. Налесник Е.О., Муслимова Э.Ф., Афанасьев С.А., Репин А.Н. Ассоциация полиморфизмов гена ACE с сердечно-сосудистыми осложнениями у пациентов, перенесших плановые чрескожные коронарные вмешательства. Российский кардиологический журнал. 2022; 27(10): 7–15. (Nalesnik E.O., Muslimova E.F., Afanasiev S.A., Repin A.N. Association of ACE gene polymorphisms with cardiovascular events in patients after elective percutaneous coronary interventions. Rossiyskiy kardiologicheskiy zhurnal = Russian Journal of Cardiology. 2022; 27(10): 7–15 (In Russ.)).


https://doi.org/10.15829/1560-4071-2022-4968. EDN: DJEULB.


11. Fatini C., Sticchi E., Gensini F. et al. Lone and secondary nonvalvular atrial fibrillation: Role of a genetic susceptibility. Int J Cardiol. 2007; 120(1): 59–65.


https://doi.org/10.1016/j.ijcard.2006.08.079. PMID: 17113662.


12. Кускаева А.В., Никулина С.Ю., Чернова А.А. с соавт. Роль полиморфизма I/D гена ACE в развитии фибрилляции предсердий. Кардиология. 2018; 58(2): 5–9. (Kuskaeva A.V., Niculina S.Yu., Chernova A.A. et al. The role of the I/D polymorphism of the ACE Gene in the development of atrial fibrillation. Kardiologiya = Cardiology. 2018; 58(2): 5–9 (In Russ.)).


https://doi.org/10.18087/cardio.2018.2.10079. EDN: YODGGM.


13. Rector T.S., Cohn J.N. Assessment of patient outcome with the Minnesota Living with Heart Failure questionnaire: Reliability and validity during a randomized, double-blind, placebo-controlled trial of pimobendan. Am Heart J. 1992; 124(4): 1017–25.


https://doi.org/10.1016/0002-8703(92)90986-6. PMID: 1529875.


14. Staessen J.A., Ginocchio G., Wang J.G. et al. Genetic variability in the renin-angiotensin system: Prevalence of alleles and genotypes. J Cardiovasc Risk. 1997; 4(5–6): 401–22. PMID: 9865673.


15. Tran D.C., Le L.H.G., Thai T.T. et al. Association between ACE I/D genetic polymorphism and the severity of coronary artery disease in Vietnamese patients with acute myocardial infarction. Front Cardiovasc Med. 2023; 10: 1091612.


https://doi.org/10.3389/fcvm.2023.1091612. PMID: 37206099. PMCID: PMC10188916.


16. Xia M.M., Wang M., Jiang H. et al. Association of Angiotensin-Converting Enzyme Insertion/Deletion Polymorphism with the Risk of Atherosclerosis. Journal of Stroke and Cerebrovascular Diseases. 2019; 28(6): 1732–43.


https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.02.012. PMID: 30878369.


17. Samani N.J., O’Toole L., Martin D. et al. Insertion/deletion polymorphism in the angiotensin-converting enzyme gene and risk of and prognosis after myocardial infarction. J Am Coll Cardiol. 1996; 28(2): 338–44.


https://doi.org/10.1016/0735-1097(96)00139-8. PMID: 8800107.


18. Winkelmann B.R. Deletion polymorphism of the angiotensin I-converting enzyme gene is associated with increased plasma angiotensin-converting enzyme activity but not with increased risk for myocardial infarction and coronary artery disease. Ann Intern Med. 1996; 125(1): 19–25.


https://doi.org/10.7326/0003-4819-125-1-199607010-00004. PMID: 8644984.


19. Keavney B., McKenzie C., Parish S. et al. Large-scale test of hypothesised associations between the angiotensin-converting-enzyme insertion/deletion polymorphism and myocardial infarction in about 5000 cases and 6000 controls. Lancet. 2000; 355(9202): 434–42.


https://doi.org/10.1016/S0140-6736(00)82009-7. PMID: 10841123.


20. Scharplatz M., Puhan M.A., Steurer J. et al. Does the Angiotensin-converting enzyme (ACE) gene insertion/deletion polymorphism modify the response to ACE inhibitor therapy? – A systematic review. Curr Control Trials Cardiovasc Med. 2005; 6(1): 16.


https://doi.org/10.1186/1468-6708-6-16. PMID: 16242049. PMCID: PMC1283147.


21. McNamara D.M., Holubkov R., Postava L. et al. Pharmacogenetic interactions between angiotensin-converting enzyme inhibitor therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. J Am Coll Cardiol. 2004; 44(10): 2019–26.


https://doi.org/10.1016/j.jacc.2004.08.048. PMID: 15542286.


22. de Albuquerque F.N., Brandao A.A., da Silva D.A. et al. Impacto do polimorfismo genetico da enzima conversora da angiotensina no remodelamento cardíaco. Arq Bras Cardiol. 2014; 102(1): 70–79 (In Portuguese)).


https://doi.org/10.5935/abc.20130229.


23. Cicoira M., Rossi A., Bonapace S. et al. Effects of ACE gene insertion/deletion polymorphism on response to spironolactone in patients with chronic heart failure. Am J Med. 2004; 116(10): 657–61.


https://doi.org/10.1016/j.amjmed.2003.12.033.


24. Schunkert H., Hense H.W., Holmer S.R. et al. Association between a deletion polymorphism of the angiotensin-converting-enzyme gene and left ventricular hypertrophy. N Engl J Med. 1994; 330(23): 1634–38.


https://doi.org/10.1056/NEJM199406093302302. PMID: 8177269.


25. Andersson B., Sylven C. The DD genotype of the angiotensin-converting enzyme gene is associated with increased mortality in idiopathic heart failure. J Am Coll Cardiol. 1996; 28(1): 162–67.


https://doi.org/10.1016/0735-1097(96)00098-8. PMID: 8752809.


26. Duque G.S., da Silva D.A., de Albuquerque F.N. et al. Influence of angiotensin-converting-enzyme gene polymorphism on echocardiographic data of patients with ischemic heart failure. Arq Bras Cardiol. 2016; 107(5): 446–54.


https://doi.org/10.5935/abc.20160145. PMID: 27812677. PMCID: PMC5137389.


27. Fatini C., Sticchi E., Marcucci R. et al. ACE insertion/deletion, but not -240A&gt;T polymorphism, modulates the severity in heart failure. J Investig Med. 2008; 56(8): 1004–10.


https://doi.org/10.2310/JIM.0b013e31818e8028. PMID: 19050458.


28. O’Toole L., Stewart M., Padfield P. et al. Effect of the insertion/deletion polymorphism of the angiotensin-converting enzyme gene on response to angiotensin-converting enzyme inhibitors in patients with heart failure. J Cardiovasc Pharmacol. 1998; 32(6): 988–94.


https://doi.org/10.1097/00005344-199812000-00017. PMID: 9869506.


About the Autors


Isa S. Magamadov, MD, junior researcher at the Department of emergency cardiology and rheumatology, I.I. Dzhanelidze Saint Petersburg Research Institute of Emergency Medicine. Address: 192242, Saint Petersburg, 3A Budapeshtskaya St.
E-mail: isamagamadow17@gmail.com
ORCID: https://orcid.org/0009-0007-7895-0750
Elena A. Skorodumova, MD, PhD (Medicine), leading researcher at the Department of emergency cardiology and rheumatology, I.I. Dzhanelidze Saint Petersburg Research Institute of Emergency Medicine. Address: 192242, Saint Petersburg, 3A Budapeshtskaya St.
E-mail: elskor@mail.ru
ORCID: https://orcid.org/0000-0002-5017-0214
Viktor A. Kostenko, MD, PhD (Medicine), head of the Department of emergency cardiology and rheumatology, I.I. Dzhanelidze Saint Petersburg Research Institute of Emergency Medicine. Address: 192242, Saint Petersburg, 3A Budapeshtskaya St.
Email: vic2012tor@gmail.com
ORCID: https://orcid.org/0000-0002-7015-1010
Lyudmila P. Pivovarova, MD, Dr. Sci. (Medicine), head of the Department of laboratory diagnostics, I.I. Dzhanelidze Saint Petersburg Research Institute of Emergency Medicine. Address: 192242, Saint Petersburg, 3A Budapeshtskaya St.
E-mail: pivovaroval@yandex.ru
ORCID: https://orcid.org/0000-0002-9492-4516
Olga B. Ariskina, MD, PhD (Biology), researcher at the Department of laboratory diagnostics, I.I. Dzhanelidze Saint Petersburg Research Institute of Emergency Medicine. Address: 192242, Saint Petersburg, 3A Budapeshtskaya St.
E-mail: olga.ariskina@mail.ru
ORCID: https://orcid.org/0000-0001-6311-1259
Anna V. Siverina, MD, PhD (Medicine), researcher at the Department of emergency cardiology and rheumatology, I.I. Dzhanelidze Saint Petersburg Research Institute of Emergency Medicine. Address: 192242, Saint Petersburg, 3A Budapeshtskaya St.
E-mail: gudkovanna_09@mail.ru
ORCID: https://orcid.org/0000-0002-6831-2153
Elizaveta G. Skorodumova, MD, PhD (Medicine), researcher at the Department of emergency cardiology and rheumatology, I.I. Dzhanelidze Saint Petersburg Research Institute of Emergency Medicine. Address: 192242, Saint Petersburg, 3A Budapeshtskaya St.
E-mail: Lisavetta91@mail.ru
ORCID: https://orcid.org/0000-0002-4961-5570


Similar Articles


Бионика Медиа