Problems of cardiommunology in the clinic of internal medicine


DOI: https://dx.doi.org/10.18565/therapy.2025.1.116-124

Mazurov V.I., Tyrenko V.V., Vakhlevsky V.V.

1) I.I. Mechnikov North-West State Medical University of the Ministry of Healthcare of Russia, Saint Petersburg; 2) S.M. Kirov Military Medical Academy of the Ministry of Defence of the Russian Federation, Saint Petersburg
Abstract. Article discusses the aspects of interaction between immune and cardiovascular systems, various schemes for the use of immunosuppressive drugs in cardiovascular diseases treatment. In the frames of the analysis of large studies on the use of immunosuppressive drugs in patients with cardiovascular pathology, various aspects of the use of these drugs in cardiology are considered. The authors of the article offer their viewpoint at the problem of the correlation between immune and cardiovascular systems from both theoretical and practical points of view. A search in PubMed, Scopus and Web of Science electronic databases in order to find relevant publications was performed until 01.01.2025 in Russian and English languages using the terms “cardioimmunology”, “immunosuppressive therapy in cardiology”, “anti-cytokine drugs in cardiology”, “JAK inhibitors and cardiovascular diseases”, “glucocorticoids and cardiovascular diseases”. Materials without access to the full text, articles in languages other than Russian and English, as well as publications that did not meet the objectives of the analysis were excluded from the study.

Literature


1. Lower R. Tractatus de corde: Item de motu & colore sanguinis et chyli in eum transitu. 1st ed. Jacobi Alleftry. 1669.


2. Waliany S., Lee D., Witteles R.M. et al. Immune checkpoint inhibitor cardiotoxicity: Understanding basic mechanisms and clinical characteristics and finding a cure. Annu Rev Pharmacol Toxicol. 2021; 61: 113–34.


https://doi.org/10.1146/annurev-pharmtox-010919-023451. PMID: 32776859.


3. Ammirati E., Frigerio M., Adler E.D. et al. Management of acute myocarditis and chronic inflammatory cardiomyopathy: An expert consensus document. Circ Heart Fail. 2020; 13(11): e007405.


https://doi.org/10.1161/circheartfailure.120.007405. PMID: 33176455. PMCID: PMC7673642.


4. Atri D., Siddiqi H.K., Lang J.P. et al. COVID-19 for the cardiologist: Basic virology, epidemiology, cardiac manifestations, and potential therapeutic strategies. JACC Basic Transl Sci. 2020; 5(5): 518–36.


https://doi.org/10.1016/j.jacbts.2020.04.002. PMID: 32292848. PMCID: PMC7151394.


5. Levine B., Kalman J., Mayer L. et al. Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med. 1990; 323(4): 236–41.


https://doi.org/10.1056/nejm199007263230405. PMID: 2195340.


6. Adamo L., Rocha-Resende C., Prabhu S.D., Mann D.L. Reappraising the role of inflammation in heart failure. Nat Rev Cardiol. 2020; 17(5): 269–85.


https://doi.org/10.1038/s41569-019-0315-x. PMID: 31969688.


7. Tschope C., Ammirati E., Bozkurt B. et al. Myocarditis and inflammatory cardiomyopathy: Current evidence and future directions. Nat Rev Cardiol. 2020; 18(3): 169–93.


https://doi.org/10.1038/s41569-020-00435-x. PMID: 33046850. PMCID: PMC7548534.


8. Herskowitz A., Choi S., Ansari A.A., Wesselingh S. Cytokine mRNA expression in postischemic/reperfused myocardium. Am J Pathol. 1995; 146(2): 419–28. PMID: 7856752. PMCID: PMC1869839.


9. Kapadia S.R., Oral H., Lee J. et al. Hemodynamic regulation of tumor necrosis factor-α gene and protein expression in adult feline myocardium. Circ Res. 1997; 81(2): 187–95.


https://doi.org/10.1161/01.res.81.2.187. PMID: 9242179.


10. Frantz S., Kobzik L., Kim Y.D. et al. Toll4 (TLR4) expression in cardiac myocytes in normal and failing myocardium. J Clin Invest. 1999; 104(3): 271–80.


https://doi.org/10.1172/jci6709. PMID: 10430608. PMCID: PMC408420.


11. Mann D.L. The emerging role of innate immunity in the heart and vascular system: For whom the cell tolls. Circ Res. 2011; 108(9): 1133–45.


https://doi.org/10.1161/circresaha.110.226936. PMID: 21527743. PMCID: PMC3084988.


12. Mackey D., McFall A.J. MAMPs and MIMPs: Proposed classifications for inducers of innate immunity. Mol Microbiol. 2006; 61(6): 1365–71.


https://doi.org/10.1111/j.1365-2958.2006.05311.x. PMID: 16899081.


13. Zhang W., Lavine K.J., Epelman S. et al. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. J Am Heart Assoc. 2015; 4(6): e001993.


https://doi.org/10.1161/jaha.115.001993. PMID: 26037082. PMCID: PMC4599537.


14. Frantz S., Falcao-Pires I., Balligand J.-L. et al. The innate immune system in chronic cardiomyopathy: A European Society of Cardiology (ESC) scientific statement from the Working Group on Myocardial Function of the ESC. Eur J Heart Fail. 2018; 20(3): 445–59.


https://doi.org/10.1002/ejhf.1138. PMID: 29333691. PMCID: PMC5993315.


15. Toldo S., Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat Rev Cardiol. 2018; 15(4): 203–14.


https://doi.org/10.1038/nrcardio.2017.161. PMID: 29143812.


16. Prabhu S.D., Frangogiannis N.G. The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circ Res. 2016; 119(1): 91–112.


https://doi.org/10.1161/circresaha.116.303577. PMID: 27340270. PMCID: PMC4922528.


17. Swirski F.K., Nahrendorf M. Cardioimmunology: The immune system in cardiac homeostasis and disease. Nat Rev Immunol. 2018; 18(12): 733–44.


https://doi.org/10.1038/s41577-018-0065-8. PMID: 30228378.


18. Torre-Amione G., Kapadia S., Lee J. et al. Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation. 1996; 93(4): 704–11.


https://doi.org/10.1161/01.cir.93.4.704. PMID: 8640999.


19. Bartekova M., Radosinska J., Jelemensky M., Dhalla N.S. Role of cytokines and inflammation in heart function during health and disease. Heart Fail Rev. 2018; 23(5): 733–58.


https://doi.org/10.1007/s10741-018-9716-x. PMID: 29862462.


20. Bajpai G., Schneider C., Wong N. et al. The human heart contains distinct macrophage subsets with divergent origins and functions. Nat Med. 2018; 24(8): 1234–45.


https://doi.org/10.1038/s41591-018-0059-x. PMID: 29892064. PMCID: PMC6082687.


21. Koenig A.L., Shchukina I., Amrute J. et al. Single-cell transcriptomics reveals cell-type-specific diversification in human heart failure. Nat Cardiovasc Res. 2022; 1(3): 263–80.


https://doi.org/10.1038/s44161-022-00028-6. PMID: 35959412. PMCID: PMC9364913.


22. Noutsias M., Pauschinger M., Schultheiss H., K hl U. Phenotypic characterization of infiltrates in dilated cardiomyopathy – diagnostic significance of T-lymphocytes and macrophages in inflammatory cardiomyopathy. Med Sci Monit. 2002; 8(7): CR478–87. PMID: 12118194.


23. Parrillo J.E., Cunnion R.E., Epstein S.E. et al. A prospective, randomized, controlled trial of prednisone for dilated cardiomyopathy. N Engl J Med. 1989; 321(16): 1061–68.


https://doi.org/10.1056/nejm198910193211601. PMID: 2677721.


24. Dick S.A., Epelman S. Chronic heart failure and inflammation: What do we really know? Circ Res. 2016; 119(1): 159–76.


https://doi.org/10.1161/circresaha.116.308030. PMID: 27340274.


25. Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008; 454(7203): 428–35.


https://doi.org/10.1038/nature07201. PMID: 18650913.


26. Hayashi T., Tiwary S.K., Lavine K.J. et al. The programmed death 1 signaling axis modulates inflammation and left ventricular structure and function in a stress-induced cardiomyopathy model. JACC Basic Transl Sci. 2022; 7(11): 1120–39.


https://doi.org/10.1016/j.jacbts.2022.05.006. PMID: 36687266. PMCID: PMC9849278.


27. Hayashi T., Lim K.R.Q., Kovacs A., Mann D.L. Recurrent adrenergic stress provokes persistent myocarditis in PD-1-deficient mice. JACC Basic Transl Sci. 2023; 8(12): 1503–17.


https://doi.org/10.1016/j.jacbts.2023.07.012. PMID: 38205352. PMCID: PMC10774592.


28. Palaskas N.L., Segura A., Lelenwa L. et al. Immune checkpoint inhibitor myocarditis: Elucidating the spectrum of disease through endomyocardial biopsy. Eur J Heart Fail. 2021; 23(10): 1725–35.


https://doi.org/10.1002/ejhf.2265. PMID: 34114291.


29. Stafford N., Assrafally F., Prehar S. et al. Signaling via the interleukin-10 receptor attenuates cardiac hypertrophy in mice during pressure overload, but not isoproterenol infusion. Front Pharmacol. 2020; 11: 559220.


https://doi.org/10.3389/fphar.2020.559220. PMID: 33192505. PMCID: PMC7662881.


30. Verma S.K., Krishnamurthy P., Barefield D. et al. Interleukin-10 treatment attenuates pressure overload-induced hypertrophic remodeling and improves heart function via signal transducers and activators of transcription 3-dependent inhibition of nuclear factor-kappaB. Circulation. 2012; 126(4): 418–29.


https://doi.org/10.1161/circulationaha.112.112185. PMID: 22705886. PMCID: PMC3422741.


31. Frustaci A., Russo M.A., Chimenti C. Randomized study on the efficacy of immunosuppressive therapy in patients with virus-negative inflammatory cardiomyopathy: The TIMIC study. Eur Heart J. 2009; 30(16): 1995–2002.


https://doi.org/10.1093/eurheartj/ehp249. PMID: 19556262.


32. Deswal A., Bozkurt B., Seta Y. et al. Safety and efficacy of a soluble P75 tumor necrosis factor receptor (Enbrel, etanercept) in patients with advanced heart failure. Circulation. 1999; 99(25): 3224–26.


https://doi.org/10.1161/01.cir.99.25.3224. PMID: 10385494.


33. Bozkurt B., Torre-Amione G., Warren M.S. et al. Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure. Circulation. 2001; 103(8): 1044–47.


https://doi.org/10.1161/01.cir.103.8.1044. PMID: 11222463.


34. Nast A., Smith C., Spuls P.I. et al. EuroGuiDerm guideline on the systemic treatment of Psoriasis vulgaris – part 2: Specific clinical and comorbid situations. J Eur Acad Dermatol Venereol. 2021; 35(2): 281–317.


https://doi.org/10.1111/jdv.16926. PMID: 33547728.


35. Kleveland O., Kunszt G., Bratlie M. et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: A double-blind, randomized, placebo-controlled phase 2 trial. Eur Heart J. 2016; 37(30): 2406–13.


https://doi.org/10.1093/eurheartj/ehw171. PMID: 27161611.


36. Mann D.L. Innate immunity and the failing heart: The cytokine hypothesis revisited. Circ Res. 2015; 116(7): 1254–68.


https://doi.org/10.1161/circresaha.116.302317. PMID: 25814686. PMCID: PMC4380242.


37. Gullestad L., Aass H., Fjeld J.G. et al. Immunomodulating therapy with intravenous immunoglobulin in patients with chronic heart failure. Circulation. 2001; 103(2): 220–25.


https://doi.org/10.1161/01.cir.103.2.220. PMID: 11208680.


38. Moreira D.M., Vieira J.L., Gottschall C.A.M. The effects of METhotrexate therapy on the physical capacity of patients with ISchemic heart failure: A randomized double-blind, placebo-controlled trial (METIS trial). J Card Fail. 2009; 15(10): 828–34.


https://doi.org/10.1016/j.cardfail.2009.06.439. PMID: 19944358.


39. McNamara D.M., Holubkov R., Starling R.C. et al. Controlled trial of intravenous immune globulin in recent-onset dilated cardiomyopathy. Circulation. 2001; 103(18): 2254–59.


https://doi.org/10.1161/01.cir.103.18.2254. PMID: 11342473.


40. Fadok V.A., Bratton D.L., Konowal A. et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Invest. 1998; 101(4): 890–98.


https://doi.org/10.1172/jci1112. PMID: 9466984. PMCID: PMC508637.


41. Torre-Amione G., Sestier F., Radovancevic B., Young J. Effects of a novel immune modulation therapy in patients with advanced chronic heart failure: Results of a randomized, controlled, phase II trial. J Am Coll Cardiol. 2004; 44(6): 1181–86.


https://doi.org/10.1016/j.jacc.2004.06.047. PMID: 15364317.


42. Torre-Amione G., Anker S.D., Bourge R.C. et al; Advanced Chronic Heart Failure CLinical Assessment of Immune Modulation Therapy Investigators. Results of a non-specific immunomodulation therapy in chronic heart failure (ACCLAIM trial): A placebo-controlled randomised trial. Lancet. 2008; 371(9608): 228–36.


https://doi.org/10.1016/S0140-6736(08)60134-8. PMID: 18207018.


About the Autors


Vadim I. Mazurov, MD, Dr. Sci. (Medicine), professor, academician of RAS, vice president of RSMSIM, principal scientific advisor and director of the Research Institute of Rheumatology, head of the Department of therapy, rheumatology, examination of temporary disability and quality of medical care with a course in hematology and transfusiology named after E.E. Eichwald of I.I. Mechnikov North-West State Medical University of the Ministry of Healthcare of Russia, chief freelance specialist – rheumatologist of the Healthcare Committee of the Government of Saint Petersburg, Honored Worker of Science of the Russian Federation. Address: 191015, Saint Petersburg, 41 Kirochnaya St.
E-mail: maz.nwgmu@yandex.ru
ORCID: https://orcid.org/0000-0002-0797-2051. Scopus Author ID: 16936315400. eLibrary SPIN: 6823-5482
Vadim V. Tyrenko, MD, Dr. Sci. (Medicine), professor, head of the Department of faculty therapy, S.M. Kirov Military Medical Academy of the Ministry of Defence of the Russian Federation. Address: 194044, Saint Petersburg, 6 Zh Akademika Lebedeva St.
ORCID: https://orcid.org/0000-0002-0470-1109. eLibrary SPIN: 3022-5038
Vitaly V. Vakhlevsky, MD, PhD (Medicine), head of the therapeutics division of the clinic of the Department of faculty therapy, S.M. Kirov Military Medical Academy of the Ministry of Defence of the Russian Federation. Address: 194044, Saint Petersburg, 6 Zh Akademika Lebedeva St.
ORCID: https://orcid.org/0000-0001-5699-2414. eLibrary SPIN: 4796-5338


Similar Articles


Бионика Медиа