Патогенетическая терапия при COVID-19 – снижение выработки ключевых факторов гипервоспалительного ответа


DOI: https://dx.doi.org/10.18565/therapy.2023.10.118-125

С.В. Николаева

ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора, г. Москва
Аннотация. Новая коронавирусная инфекция привела к высокой заболеваемости и смертности во всем мире. Существует несколько геновариантов вируса SARS-CoV-2, в том числе дельта (B.1.617.2) и омикрон (B.1.1.529). Вариант дельта связан с более тяжелым течением инфекции, тогда как омикрон привел к значительному увеличению общего числа инфицированных лиц. Симптомы поражения верхних дыхательных путей и лихорадка остаются наиболее распространенными симптомами COVID- 19, но возможно развитие и внелегочных его осложнений, затрагивающих сердечно-сосудистую, центральную нервную системы, желудочно-кишечный тракт. Упреждающее лечение еще до развития полного симптомокомплекса жизнеугрожающих состояний (пневмонии, ОРДС, сепсиса) является основной задачей в борьбе с COVID-19. Перспективным направлением патогенетической терапии можно считать назначение препаратов, способных снижать выработку ключевых факторов гипервоспалительного ответа при COVID- 19, в частности цитокинов интерлейкина 6 и интерлейкина 8.

Литература


1. О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2020 году: Государственный доклад. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека, 2021; 256 с.


2. О состоянии санитарно-эпидемиологического благополучия населения в Российской Федерации в 2021 году: Государственный доклад. М.: Федеральная служба по надзору в сфере защиты прав потребителей и благополучия человека. 2022; 340 с.


3. Yang J., Zheng Y., Gou X. et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020; 94: 91–95. https://dx.doi.org/10.1016/j.ijid.2020.03.017.


4. Gautier J.F., Ravussin Y. A new symptom of COVID-19: Loss of taste and smell. Obesity (Silver Spring). 2020;2 8(5): 848.https://dx.doi.org/10.1002/oby.22809.


5. Rodriguez-Morales A.J., Cardona-Ospina J.A., Gutierrez-Ocampo E. et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis. 2020; 34: 101623. https://dx.doi.org/10.1016/j.tmaid.2020.101623.


6. Li Q., Guan X,. Wu P. et al. Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 2020; 382(13): 1199–207. https://dx.doi.org/10.1056/NEJMoa2001316.


7. Wiersinga W.J., Rhodes A., Cheng A.C. et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review. JAMA. 2020; 324(8): 782–93. https://dx.doi.org/10.1001/jama.2020.12839.


8. Epidemiology Working Group for NCIP Epidemic Response, Chinese Center for Disease Control and Prevention.


9. Gottlieb M., Sansom S., Frankenberger C. et al. Clinical course and factors associated with hospitalization and critical illness among COVID-19 patients in Chicago, Illinois. Acad Emerg Med. 2020; 27(10): 963–73. https://dx.doi.org/10.1111/acem.14104.


10. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395(10223): 497–506. https://dx.doi.org/10.1016/S0140-6736(20)30183-5.


11. Richardson S., Hirsch J.S., Narasimhan M. et al. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area. JAMA. 2020; 323(20): 2052–2059. https://dx.doi.org/10.1001/jama.2020.6775.


12. Ziehr D.R., Alladina J., Petri C.R. et al. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. Am J Respir Crit Care Med. 2020; 201(12): 1560–64. https://dx.doi.org/10.1164/rccm.202004-1163LE.


13. Auld S.C., Caridi-Scheible M., Blum J.M. et al. ICU and ventilator mortality among critically ill adults with coronavirus disease 2019. Crit Care Med. 2020; 48(9): e799–e804. https://dx.doi.org/10.1097/CCM.0000000000004457.


14. Levin A.T., Hanage W.P., Owusu-Boaitey N. et al. Assessing the age specificity of infection fatality rates for COVID-19: Systematic review, meta-analysis, and public policy implications. Eur J Epidemiol. 2020; 35(12): 1123–38.https://dx.doi.org/10.1007/s10654-020-00698-1.


15. Harrison S.L., Fazio-Eynullayeva E., Lane D.A. et al. Comorbidities associated with mortality in 31,461 adults with COVID-19 in the United States: A federated electronic medical record analysis. PLoS Med. 2020; 17(9): e1003321.https://dx.doi.org/10.1371/journal.pmed.1003321.


16. Cates J., Lucero-Obusan C., Dahl R.M. et al. Risk for in-hospital complications associated with COVID-19 and influenza – Veterans health administration, United States, October 1, 2018–May 31, 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(42): 1528–34.https://dx.doi.org/10.15585/mmwr.mm6942e3.


17. Xie Y., Bowe B., Maddukuri G., Al-Aly Z. Comparative evaluation of clinical manifestations and risk of death in patients admitted to hospital with covid-19 and seasonal influenza: cohort study. BMJ. 2020; 371: m4677. https://dx.doi.org/10.1136/bmj.m4677.


18. Lentz S., Roginski M.A., Montrief T. et al. Initial emergency department mechanical ventilation strategies for COVID-19 hypoxemic respiratory failure and ARDS. Am J Emerg Med. 2020; 38(10): 2194–202. https://dx.doi.org/10.1016/j.ajem.2020.06.082.


19. Verma A.A., Hora T., Jung H.Y. et al. Characteristics and outcomes of hospital admissions for COVID-19 and influenza in the Toronto area. CMAJ. 2021; 193(12): E410–E418. https://dx.doi.org/10.1503/cmaj.202795.


20. Dennis J.M., McGovern A.P., Vollmer S.J., Mateen B.A. Improving survival of critical care patients with coronavirus disease 2019 in England: A National Cohort Study, March to June 2020. Crit Care Med. 2021; 49(2): 209–14.https://dx.doi.org/10.1097/CCM.0000000000004747.


21. Petrilli C.M., Jones S.A., Yang J. et al. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study. BMJ. 2020; 369: m1966. https://dx.doi.org/10.1136/bmj.m1966.


22. Williamson E.J., Walker A.J., Bhaskaran K. et al. Factors associated with COVID-19-related death using OpenSAFELY. Nature. 2020; 584(7821): 430–36. https://dx.doi.org/10.1038/s41586-020-2521-4.


23. Cunningham J.W., Vaduganathan M., Claggett B.L. et al. Clinical outcomes in young US adults hospitalized with COVID-19. JAMA Intern Med. 2020; 181(3): 379–81. https://dx.doi.org/10.1001/jamainternmed.2020.5313. Online ahead of print.


24. CDC COVID-19 Response Team. Preliminary estimates of the prevalence of selected underlying health conditions among patients with coronavirus disease 2019 – United States, February 12 – March 28, 2020. MMWR Morb Mortal Wkly Rep. 2020; 69(13): 382–86.https://dx.doi.org/10.15585/mmwr.mm6913e2.


25. Временные методические рекомендации «Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19)». Версия 10 от 08.02.2021. Минздрав России. Доступ: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/054/588/original/ВРЕМЕННЫЕ_МР_COVID-19_%28v.10%29-08.02.2021_%281%29.pdf (дата обращения – 01.12.2022).


26. Dyer O. Covid-19: Delta infections threaten herd immunity vaccine strategy. BMJ. 2021; 374: n1933.https://dx.doi.org/10.1136/bmj.n1933.


27. Ong S.W.X., Chiew C.J., Ang L.W. et al. Clinical and virological features of SARS-CoV-2 variants of concern: A retrospective cohort study comparing B.1.1.7 (Alpha), B.1.315 (Beta), and B.1.617.2 (Delta). Clin Infect Dis. 2022; 75(1): e1128–e1136.https://dx.doi.org/10.1093/cid/ciab721.


28. Liu Y., Rocklov J. The reproductive number of the Delta variant of SARS-CoV-2 is far higher compared to the ancestral SARS-CoV-2 virus. J Travel Med. 2021; 28(7): taab124. https://dx.doi.org/10.1093/jtm/taab124.


29. Sheikh A., McMenamin J., Taylor B., Robertson C.; Public Health Scotland and the EAVE II Collaborators. SARS-CoV-2 Delta VOC in Scotland: Demographics, risk of hospital admission, and vaccine effectiveness. Lancet. 2021; 397(10293): 2461–62.https://dx.doi.org/10.1016/S0140-6736(21)01358-1.


30. Twohig K.A., Nyberg T., Zaidi A. et al.; COVID-19 Genomics UK (COG-UK) consortium. Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study. Lancet Infect Dis. 2022; 22(1): 35–42. https://dx.doi.org/10.1016/S1473-3099(21)00475-8.


31. World Health Organization (WHO): What you need to know about the new Omicron COVID-19 variant. URL: https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid19/news/news/2021/12/what-you-needto-know-about-the-new-omicron-covid-19-variant (date of access – 09.12.2021).


32. Centers for Disease Control and Prevention. SARS-CoV-2 Variant classifications and definitions. 2021.URL: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-info.html (date of access – 01.12.2022).


33. Abbott S., Hellewell J., Thompson R.N. et al. Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts. Wellcome Open Res. 2020; 5: 112. https://dx.doi.org/10.12688/wellcomeopenres.16006.2.


34. World Health Organization. Update on Omicron 2021.URL: https://www.who.int/news/item/28-11-2021-updateon-omicron (date of access – 06.12.2021).


35. Saxena S.K., Kumar S., Ansari S. et al. Characterization of the novel SARS-CoV-2 Omicron (B.1.1.529) variant of concern and its global perspective. J Med Virol. 2022; 94(4): 1738–44. https://dx.doi.org/10.1002/jmv.27524.


36. Mannar D., Saville J.W., Zhu X. et al. SARS-CoV-2 Omicron variant: Antibody evasion and cryo-EM structure of spike protein-ACE2 complex. Science. 2022; 375(6582): 760–64. https://dx.doi.org/10.1126/science.abn7760.


37. European Centre for Disease Prevention and Control. Epidemiological update: Omicron Variant of Concern (VOC). 11 December 2021. URL: https://www.ecdc.europa.eu/en/news-events/epidemiological-update-omicron-variantconcern-voc-data-11-december-2021 (date of access – 21.01.2022).


38. Kumar S., Thambiraja T.S., Karuppanan K., Subramaniam G. Omicron and Delta variant of SARS-CoV-2: A comparative computational study of spike protein. J Med Virol. 2022; 94(4): 1641–49. https://dx.doi.org/10.1002/jmv.27526.


39. Song W.J., Hui C.K.M., Hull J.H. et al. Confronting COVID-19-associated cough and the post-COVID syndrome: Role of viral neurotropism, neuroinflammation, and neuroimmune responses. Lancet Respir Med. 2021; 9(5): 533–44.https://dx.doi.org/10.1016/S2213-2600(21)00125-9.


40. Brandal L.T., MacDonald E., Veneti L. et al. Outbreak caused by the SARS-CoV-2 Omicron variant in Norway, November to December 2021. Euro Surveill. 2021; 26(50): 2101147. https://dx.doi.org/10.2807/1560-7917.ES.2021.26.50.2101147.


41. UK Health Security Agency (UKHSA). SARS-CoV-2 variants of concern and variants under investigation in England. Technical briefing 31. 10 December 2021. URL: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1040076/Technical_Briefing_31.pdf (date of access – 01.12.2022).


42. Ibekwe T.S., Fasunla A.J., Orimadegun A.E. Systematic review and meta-analysis of smell and taste disorders in COVID-19. OTO Open. 2020; 4(3): 2473974X20957975. https://dx.doi.org/10.1177/2473974X20957975.


43. Hoffmann M., Kleine-Weber H., Schroeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181(2): 271–80.e8. https://dx.doi.org/10.1016/j.cell.2020.02.052.


44. Dong M., Zhang J., Ma X. et al. ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother. 2020; 131: 110678. https://dx.doi.org/10.1016/j.biopha.2020.110678.


45. Maslo C., Friedland R., Toubkin M. et al. Characteristics and outcomes of hospitalized patients in South Africa during the COVID-19 Omicron wave compared with previous waves. JAMA. 2022; 327(6): 583–84. https://dx.doi.org/10.1001/jama.2021.24868.


46. Burki T.K. Omicron variant and booster COVID-19 vaccines. Lancet Respir Med. 2022; 10(2): e17.https://dx.doi.org/10.1016/S2213-2600(21)00559-2.


47. Collie S., Champion J., Moultrie H. et al. Effectiveness of BNT162b2 vaccine against Omicron Variant in South Africa. N Engl J Med. 2022; 386(5): 494–96. https://dx.doi.org/10.1056/NEJMc2119270.


48. Пшеничная Н.Ю., Лизинфельд И.А., Журавлев Г.Ю. с соавт. Эпидемический процесс COVID-19 в Российской Федерации: промежуточные итоги. Сообщение 1. Инфекционные болезни. 2020; 18(3): 7–14.


49. Guo T., Fan Y., Chen M. et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020; 5(7): 811–18. https://dx.doi.org/10.1001/jamacardio.2020.1017.


50. Long B., Brady W.J., Koyfman A., Gottlieb M. Cardiovascular complications in COVID-19. Am J Emerg Med. 2020; 38(7): 1504–7. https://dx.doi.org/10.1016/j.ajem.2020.04.048.


51. Madjid M., Safavi-Naeini P., Solomon S.D., Vardeny O. Potential effects of coronaviruses on the cardiovascular system: A review. JAMA Cardiol. 2020; 5(7): 831–40. https://dx.doi.org/10.1001/jamacardio.2020.1286.


52. Ranard L.S., Fried J.A., Abdalla M. et al. Approach to acute cardiovascular complications in COVID-19 infection. Circ Heart Fail. 2020; 13(7): e007220. https://dx.doi.org/10.1161/CIRCHEARTFAILURE.120.007220.


53. Rajpal S., Tong M.S., Borchers J. et al. Cardiovascular magnetic resonance findings in competitive athletes recovering from COVID-19 infection. JAMA Cardiol. 2021; 6(1): 116–18. https://dx.doi.org/10.1001/jamacardio.2020.4916.


54. Sagar S., Liu P.P., Cooper L.T. Jr. Myocarditis. Lancet. 2012; 379(9817): 738–47. https://dx.doi.org/10.1016/S0140-6736(11)60648-X.


55. Петриков С.С., Годков М.А., Каниболоцкий А.А. с соавт. Результаты ПЦР-тестирования на наличие SARS-CoV-2 материала из различных органов пациентов, умерших в постковидный период от причин, непосредственно не связанных с COVID-19. Инфекционные болезни. 2022; 20(1): 5–15.


56. Lindner D., Fitzek A., Breuninger H. et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020; 5(11): 1281–85. https://dx.doi.org/10.1001/jamacardio.2020.3551.


57. Liotta E.M., Batra A., Clark J.R. et al. Frequent neurologic manifestations and encephalopathy-associated morbidity in Covid-19 patients. Ann Clin Transl Neurol. 2020; 7(11): 2221–30. https://dx.doi.org/10.1002/acn3.51210.


58. Beltran-Corbellini A., Chico-Garcia J.L., Martinez-Poles J. et al. Acute-onset smell and taste disorders in the context of COVID-19: A pilot multicentre polymerase chain reaction based case-control study. Eur J Neurol. 2020; 27(9): 1738–41.https://dx.doi.org/10.1111/ene.14273.


59. Lechien J.R., Chiesa-Estomba C.M., De Siati D.R. et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur Arch Otorhinolaryngol. 2020; 277(8): 2251–61. https://dx.doi.org/10.1007/s00405-020-05965-1.


60. Ousseiran Z.H., Fares Y., Chamoun W.T. Neurological manifestations of COVID-19: A systematic review and detailed comprehension. Int J Neurosci. 2021: 1–16. https://dx.doi.org/10.1080/00207454.2021.1973000. Online ahead of print.


61. Abdelmaksoud A.A., Ghweil A.A., Hassan M.H. et al. Olfactory disturbances as presenting manifestation among Egyptian patients with COVID-19: Possible role of zinc. Biol Trace Elem Res. 2021; 199(11): 4101–8. https://dx.doi.org/10.1007/s12011-020-02546-5.


62. Tong J.Y., Wong A., Zhu D. et al. The prevalence of olfactory and gustatory dysfunction in COVID-19 patients: A systematic review and meta-analysis. Otolaryngol Head Neck Surg. 2020; 163(1): 3–11. https://dx.doi.org/10.1177/0194599820926473.


63. Lechien J.R., Chiesa-Estomba C.M., De Siati D.R. et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur Arch Otorhinolaryngol. 2020; 277(8): 2251–61. https://dx.doi.org/10.1007/ s00405-020-05965-1.


64. Leven Y., Bosel J. Neurological manifestations of COVID-19 – An approach to categories of pathology. Neurol Res Pract. 2021; 3(1): 39. https://dx.doi.org/10.1186/s42466-021-00138-9.


65. Frontera J.A., Sabadia S., Lalchan R. et al. A prospective study of neurologic disorders in hospitalized patients with COVID-19 in New York City. Neurology. 2021; 96(4): e575–e586. https://dx.doi.org/10.1212/WNL.0000000000010979.


66. Hosseini A.A., Shetty A.K., Sprigg N. et al. Delirium as a presenting feature in COVID-19: Neuroinvasive infection or autoimmune encephalopathy? Brain Behav Immun. 2020; 88: 68–70. https://dx.doi.org/10.1016/j.bbi.2020.06.012.


67. Mao L, Wang M., Chen S. et al. Neurological manifestations of hospitalized patients with COVID-19 in Wuhan, China: A retrospective case series study. medRxiv. 2020. https://dx.doi.org/10.1101/2020.02.22.20026500. Preprint.


68. Tu T.M., Goh C., Tan Y.K. et al. Cerebral venous thrombosis in patients with COVID-19 infection: a case series and systematic review. J Stroke Cerebrovasc Dis. 2020; 29(12): 105379. https://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.105379.


69. Shechter A., Diaz F., Moise N. et al. Psychological distress, coping behaviors, and preferences for support among New York healthcare workers during the COVID-19 pandemic. Gen Hosp Psychiatry. 2020; 66: 1–8. https://dx.doi.org/10.1016/j.genhosppsych.2020.06.007.


70. Cheung K.S., Hung I.F.N., Chan P.P.Y. et al. Gastrointestinal manifestations of SARS-CoV-2 infection and virus load in fecal samples from a Hong Kong cohort: Systematic review and meta-analysis. Gastroenterology. 2020; 159(1): 81–95.https://dx.doi.org/10.1053/j.gastro.2020.03.065.


71. Lin L., Jiang X., Zhang Z. et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut. 2020; 69(6): 997–1001.https://dx.doi.org/10.1136/gutjnl-2020-321013.


72. Kaafarani H.M.A., El Moheb M., Hwabejire J.O. et al. Gastrointestinal complications in critically ill patients with COVID-19. Ann Surg. 2020; 272(2): e61–e62. https://dx.doi.org/10.1097/SLA.0000000000004004.


73. Горелов А.В., Плоскирева А.А., Понежева Ж.Б. с соавт. COVID-19 – многоликий Янус. К вопросу о классификации новой коронавирусной инфекции. Инфекционные болезни. 2021; 19(4): 103–111.


74. Recalcati S. Cutaneous manifestations in COVID-19: A first perspective. J Eur Acad Dermatol Venereol. 2020; 34(5): e212–e213. https://dx.doi.org/10.1111/jdv.16387.


75. Das A., Singh V. Erythematous-edematous type of chilblain-like lesions and COVID-19: An Indian perspective. Dermatol Ther. 2020; 33(6): e13912. https://dx.doi.org/10.1111/dth.13912.


76. Gottlieb M., Long B. Dermatologic manifestations and complications of COVID-19. Am J Emerg Med. 2020; 38(9): 1715–21.https://dx.doi.org/10.1016/j.ajem.2020.06.011.


77. Chan M.C., Cheung C.Y., Chui W.H. et al. Proinflammatory cytokine responses induced by influenza A (H5N1) viruses in primary human alveolar and bronchial epithelial cells. Respir Res. 2005; 6(1): 135. https://dx.doi.org/10.1186/1465-9921-6-135.


78. Перегоедова В.Н., Богомолова И.К., Бабкин А.А., Терешков П.П. Содержание некоторых цитокинов и хемокинов сыворотки крови при коронавирусной инфекции у детей. Вопросы практической педиатрии. 2022; 17(2): 16–22.


79. Costela-Ruiz V.J., Illescas-Montes R., Puerta-Puerta J.M. et al. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine Growth Factor Rev. 2020; 54: 62–75. https://dx.doi.org/10.1016/j.cytogfr.2020.06.001.


80. Han H., Ma Q., Li C. et al. Profiling serum cytokines in COVID-19 patients reveals IL-6 and IL-10 are disease severity predictors. Emerg Microbes Infect. 2020; 9(1): 1123–30. https://dx.doi.org/10.1080/22221751.2020.1770129.


81. Chi Y., Ge Y., Wu B. et al. Serum cytokine and chemokine profile in relation to the severity of coronavirus disease 2019 in China. J Infect Dis. 2020; 222(5): 746–54. https://dx.doi.org/10.1093/infdis/jiaa363.


82. Ragab D., Salah Eldin H., Taeimah M. et al. The COVID-19 cytokine storm; What we know so far. Front Immunol. 2020; 11: 1446.https://dx.doi.org/10.3389/fimmu.2020.01446.


83. Ulhaq Z.S., Soraya G.V. Interleukin-6 as a potential biomarker of COVID-19 progression. Med Mal Infect. 2020; 50(4): 382–83.https://dx.doi.org/10.1016/j.medmal.2020.04.002.


84. Стукова М.А., Рыдловская А.В., Проскурина О.В. соавт. Фармакодинамическая активность нового соединения XC221GI в in vitro и in vivo моделях вирусного воспаления респираторного тракта. Microbiology Independent Research Journal. 2022; 9(1): 56–70.


85. Горелов А.В., Калюжин О.В., Багаева М.И. Новые возможности упреждающей противовоспалительной терапии пациентов со среднетяжелой и тяжелой формой COVID-19. Терапевтический архив. 2022; 94(7): 872–875.


Об авторах / Для корреспонденции


Светлана Викторовна Николаева, д.м.н., ведущий научный сотрудник клинического отдела инфекционной патологии ФБУН «Центральный научно-исследовательский институт эпидемиологии» Роспотребнадзора. Адрес: 111123, г. Москва, ул. Новогиреевская, д. 3а. E-mail: nikolaeva008@list.ru


Похожие статьи


Бионика Медиа