Modern opportunities of therapy for metabolic cardiomyopathy and heart failure


DOI: https://dx.doi.org/10.18565/therapy.2020.6.139-149

Shishkova V.N., Martynov A.I.

1) Center for speech pathology and neurorehabilitation of Moscow Healthcare Department; 2) A.I. Evdokimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia
Article contains information about the pathogenetic aspects of the development of cardiomyopathys and heart failure, which develop as insulin resistance, visceral obesity and type 2 diabetes mellitus complications. Examples of modern therapeutic strategies of metabolic cardiomyopathy and heart failure treatment are discussed, the mechanism of action and the main clinical effects of Mildronate in relation to these pathologies are discussed in details.

Literature



  1. Шишкова В.Н. Механизмы развития сердечно-сосудистых заболеваний и сахарного диабета типа 2: роль инсулинорезистентности, гиперинсулинемии и гипоадипонектинемии. Системные гипертензии. 2014; 2: 48–53. [Shishkova V.N. The mechanisms of developmentcardiovascular disease and type 2 diabetes: the role of insulin resistance, hyperinsulinemia and hypoadiponektinemia. Treatment and management. Sistemnye gipertenzii. 2014; 2: 48–53 (In Russ.)].

  2. Bozkurt B., Aguilar D., Deswal A. et al. Contributory risk and management of comorbidities of hypertension, obesity, diabetes mellitus, hyperlipidemia, and metabolic syndrome in chronic heart failure: A scientific statement from the American Heart Association. Circulation. 2016; 134(23): e535–e578. doi: 10.1161/CIR.0000000000000450.

  3. Rubler S., Dlugash J., Yuceoglu Y.Z. et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol. 1972; 30(6): 595–602. doi: 10.1016/0002-9149(72)90595-4.

  4. Yancy C.W., Jessup M., Bozkurt B. et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013; 62(16): e147–239. doi: 10.1016/j.jacc.2013.05.019.

  5. Nakamura M., Sadoshima J. Cardiomyopathy in obesity, insulin resistance and diabetes. J Physiol. 2020; 598(14): 2977–93. doi: 10.1113/JP276747.

  6. Lopaschuk G.D., Ussher J.R., Folmes C.D.L. et al. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010; 90(1): 207–58. doi: 10.1152/physrev.00015.2009.

  7. Nakamura M., Sadoshima J. Mechanisms of physiological and pathological cardiac hypertrophy. Nat Rev Cardiol. 2018; 15(7): 387–407. doi: 10.1038/s41569-018-0007-y.

  8. Rijzewijk L.J., van der Meer R.W., Diamant M. et al. Myocardial steatosis is an independent predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol. 2008; 52(22): 1793–99. doi: 10.1016/j.jacc.2008.07.062.

  9. Rijzewijk L.J., van der Meer R.W., Lamb H.J. et al. Altered myocardial substrate metabolism and decreased diastolic function in nonischemic human diabetic cardiomyopathy: studies with cardiac positron emission tomography and magnetic resonance imaging. J Am Coll Cardiol. 2009; 54(16): 1524–32. doi: 10.1016/j.jacc.2009.04.074.

  10. Bikman B.T., Summers S.A. Ceramides as modulators of cellular and whole-body metabolism. J Clin Invest. 2011; 121(11): 4222–30. doi: 10.1172/JCI57144.

  11. Jornayvaz F.R., Shulman G.I. Diacylglycerol activation of protein kinase Cε and hepatic insulin resistance. Cell Metab. 2012; 15(5): 574–84. doi: 10.1016/j.cmet.2012.03.005.

  12. McCoin C.S., Knotss T.A., Adams S.H. Acylcarnitines – old actors auditioning for new roles in metabolic physiology. Nat Rev Endocrinol. 2015; 11(10): 617–25. doi: 10.1038/nrendo.2015.129.

  13. Ahmad T., Kelly J.P., McGarrah R.W. et al. Prognostic implications of long-chain acylcarnitines in heart failure and reversibility with mechanical circulatory support. J Am Coll Cardiol.; 67(3): 291–99. doi: 10.1016/j.jacc.2015.10.079.

  14. Kroemer G., Lopez-Otin C., Madeo F. et al. Carbotoxicity-noxious effects of carbohydrates. Cell. 2018; 175(3): 605–14. doi: 10.1016/j.cell.2018.07.044.

  15. Nakamura M., Bhatnagar A., Sadoshima J. Overview of pyridine nucleotides review series. Circ Res. 2012; 111(5): 604–10. doi: 10.1161/CIRCRESAHA.111.247924.

  16. Nakamura M., Liu T., Husain S. et al. Glycogen synthase kinase-3α promotes fatty acid uptake and lipotoxic cardiomyopathy. Cell Metab. 2019; 29(5): 1119–1134.e12. doi: 10.1016/j.cmet.2019.01.005.

  17. Forrester S.J., Kikuchi D.S., Hernandes M.S. et al. Reactive oxygen species in metabolic and inflammatory signaling. Circ Res. 2018; 122(6): 877–902. doi: 10.1161/CIRCRESAHA.117.311401.

  18. Hotamisligil G.S. Foundations of immunometabolism and implications for metabolic health and disease. Immunity. 2017; 47(3): 406–20. doi: 10.1016/j.immuni.2017.08.009.

  19. Mann D.L. Innate immunity and the failing heart: the cytokine hypothesis revisited. Circ Res. 2015; 116(7): 1254–68. doi: 10.1161/CIRCRESAHA.116.302317.

  20. Marwick T.H., Ritchie R., Shaw J.E. et al. Implications of underlying mechanisms for the recognition and management of diabetic cardiomyopathy. J Am Coll Cardiol. 2018; 71(3): 339–51. doi: 10.1016/j.jacc.2017.11.019.

  21. Tsujimoto T., Kajio H. Abdominal obesity is associated with an increased risk of all-cause mortality in patients with HFpEF. J Am Coll Cardiol. 2017; 70(22): 2739–49. doi: 10.1016/j.jacc.2017.09.1111.

  22. Bray G.A., Frunbeck G., Ryan D.H., Wilding J.P.H. Management of obesity. Lancet. 2016; 387(10031): 1947–56. doi: 10.1016/S0140-6736(16)00271-3.

  23. Nassif M., Kosiborod M. Effect of glucose-lowering therapies on heart failure. Nat Rev Cardiol. 2018; 15(5): 282–91. doi: 10.1038/nrcardio.2017.211.

  24. Marso S.P., Bain S.C., Consoli A. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes.N Engl J Med. 2016; 375(19): 1834–44. doi: 10.1056/NEJMoa1607141.

  25. Zinma B., Wanner C., Lachin J.M. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes.N Engl J Med. 2015; 373(22): 2117–28. doi: 10.1056/NEJMoa1504720.

  26. Kosiborod M., Cavender M.A., Fu A.Z. et al. Lower risk of heart failure and death in patients initiated on sodium-glucose cotransporter-2 inhibitors versus other glucose-lowering drugs: The CVD-REAL study (comparative effectiveness of cardiovascular outcomes in new users of sodium-glucose cotransporter-2 inhibitors). Circulation. 2017; 136(3): 249–59. doi: 10.1161/CIRCULATIONAHA.117.029190.

  27. Zelniker T.A., Wiviott S.D., Raz I. et al. SGLT2 inhibitors for primary and secondary prevention of cardiovascular and renal outcomes in type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet. 2019; 393(10166): 31–39. doi: 10.1016/S0140-6736(18)32590-X.

  28. Ridker P.M., Pradhan A., Mac Fadyen J.G. et al. Cardiovascular benefits and diabetes risks of statin therapy in primary prevention: an analysis from the JUPITER trial. Lancet. 2012; 380(9841): 565–71. doi: 10.1016/S0140-6736(12)61190-8.

  29. Kjekshus J., Apetrei E., Barrios V. et al. Rosuvastatin in older patients with systolic heart failure. N Engl J Med. 2007; 357(22): 2248–61. doi: 10.1056/NEJMoa0706201.

  30. Quispe R., Martin S.S., Jones S.R. Triglycerides to high-density lipoprotein-cholesterol ratio, glycemic control and cardiovascular risk in obese patients with type 2 diabetes. Curr Opin Endocrinol Diabetes Obes. 2016; 23(2): 150–56. doi: 10.1097/MED.0000000000000241.

  31. 2019 Рекомендации ЕSC/EASD по сахарному диабету, предиабету и сердечно-сосудистым заболеваниям. Российский кардиологический журнал. 2020; 4: 101–161. [2019 ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Rossiysky kardiologichesky zhurnal. 2020; 4: 101–161 (In Russ.)]. doi: 10.15829/1560-4071-2020-3839.

  32. Udell J.A., Cavender M.A., Bhatt D.L. et al. Glucose-lowering drugs or strategies and cardiovascular outcomes in patients with or at risk for type 2 diabetes: a meta-analysis of randomised controlled trials. Lancet Diabetes Endocrinol. 2015; 3(5): 356–66. doi: 10.1016/S2213-8587(15)00044-3.

  33. Levelt E., Mahmod M., Piechnik S.K. et al. Relationship between left ventricular structural and metabolic remodelling in type 2 diabetes mellitus. Diabetes. 2016; 65(1): 44–52. doi: 10.2337/db15-0627.

  34. Levelt E., Gulsin G., Neubauer S., McCann G.P. Diabetic cardiomyopathy: pathophysiology and potential metabolic interventions state of the art review. Eur J Endocrinol. 2018; 178(4): R127–R139. doi: 10.1530/EJE-17-0724.

  35. Sjakste N., Gutcaits A., Kalvinsh I. Mildronate: an antiischemic drug for neurological indications. CNS Drug Rev. 2005; 11(2): 151–68. doi: 10.1111/j.1527-3458.2005.tb00267.x.

  36. Eremeev A. et al. 3-(2,2,2-Trimethylhydrazinium) propionate and method for the preparation and use thereof: pat. 4481218. USA. 1984.

  37. Распоряжение Правительства РФ от 10.12.2018 №2738-р «Об утверждении перечня жизненно необходимых и важнейших лекарственных препаратов для медицинского применения на 2019 год».

  38. Jaudzems K., Kuka J., Gutsaits A. et al. Inhibition of carnitine acetyltransferase by mildronate, a regulator of energy metabolism. J Enzyme Inhib Med Chem. 2009; 24(6): 1269–75. doi: 10.3109/14756360902829527.

  39. Skarda I., Klincare D., Dzerve V. et al. Modulation of myocardial energy metabolism with mildronate - an effective approach in the treatment of chronic heart failure. Proceedings of the Latvian Academy of Sciences. 2001; 55(2–3): 73–79.

  40. Visokinskas A., Kalvins I., Knasiene J., Lesauskaite V. Use of Mildronate in geriatric patients with congestive heart failure. Journal of The Indian Academy of Geriatrics. 2005; 1(3): 110–13.

  41. Галявич А.С., Галеева З.М., Балеева Л.В. Эффективность и переносимость Милдроната при лечении пациентов с хронической сердечной недостаточностью. Российский кардиологический журнал. 2005; 5: 1–4. [Galyavich A.S., Galeeva Z.M., Baleeva L.V. Efficacy and tolerability of Mildronate in the treatment of patients with chronic heart failure. Rossiysky kardiologichesky zhurnal. 2005; 5: 1–4 (In Russ.)].

  42. Митрохин В.Е. Миокардиальная цитопротекция у больных стенокардией и хронической сердечной недостаточностью. Фарматека. 2003; 12: 109–111. [Mitrokhin V.E. Myocardial cytoprotection in patients with angina pectoris and chronic heart failure. Farmateka. 2003; 12: 109–111 (In Russ.)].

  43. Семенкова Г.Г., Кокорева Л.В. Сравнительная эффективность лечения больных хронической сердечной недостаточностью с применением миокардиальных цитопротекторов. Российский кардиологический журнал. 2007; 2: 77–82. [Semenkova G.G., Kokoreva L.V. Comparative effectiveness of myocardial cytoprotectors in chronic heart failure treatment. Rossiysky kardiologichesky zhurnal. 2007; 2: 77–82 (In Russ.)].

  44. Шишкова В.Н. Коморбидность и полипрогмазия: фокус и цитопротекцию. Consilium Medicum. 2016; 12: 73–79. [Shishkova V.N. Comorbidity and polypharmacy: focus on cytoprotection. Consilium Medicum. 2016; 12: 73–79 (In Russ.)].

  45. Карпов Р.С., Кошельская О.А., Врублевский А.В. с соавт. Клиническая эффективность и безопасность милдроната при лечении хронической сердечной недостаточности у больных ишемической болезнью сердца. Кардиология. 2000; 6: 69–74. [Karpov R.S., Koshelskaya O.A., Vrublevsky A.V. et al. Clinical efficacy and safety of mildronate in the treatment of chronic heart failure in patients with ischemic heart disease. Kardiologiya. 2000; 6: 69–74 (In Russ.)].

  46. Недошивин А.О., Петрова Н.Н., Кутузова А.Е., Перепеч Н.Б. Качество жизни больных с хронической сердечной недостаточностью. Эффект лечения Милдронатом. Терапевтический архив. 1999; 8: 10. [Nedoshivin A.O., Petrova N.N., Kutuzova A.E., Perepech N.B. Quality of life of patients with chronic heart failure. The effect of treatment with Mildronate. Terapevtichesky arkhiv. 1999; 8: 10 (In Russ.)].

  47. Стаценко М.Е., Туркина С.В., Беленкова С.В. с соавт. Влияние Милдроната в составе комбинированной терапии хронической сердечной недостаточности у больных сахарным диабетом типа 2 на углеводный, липидный обмен и показатели оксидативного стресса. Российский кардиологический журнал. 2010; 2: 45–51. [Statsenko M.E., Turkina S.V., Belenkova S.V. et al. Effects of Mildronate as a part of combined heart failure therapy, on carbohydrate and lipid metabolism and oxidative stress parameters in patients with type 2 diabetes mellitus. Rossiysky kardiologichesky zhurnal. 2010; 2: 45–51 (In Russ.)].

  48. Dzerve V., Matisone D., Pozdnyakov Y., Oganov R. Mildronate improves the exercise tolerance in patients with stable angina: results of a long term clinical trial. Sem Cardiovasc Med. 2010; 16(3): 1–8.


About the Autors


Veronika N. Shishkova, PhD, assistant of the Department of polyclinic therapy of A.I. Evdomimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia, senior researcher of the neurorehabilitation Department of Center for speech pathology and neurorehabilitation of Moscow Healthcare Department. Address: 109240, Moscow, 20/1 Nikoloyamskaya Str. Tel.: +7 (495) 637-83-63. E-mail: veronika-1306@mail
Anatoly I. Martynov, MD, professor of the Department of hospital therapy No. 1 of A.I. Evdomimov Moscow State University of Medicine and Dentistry of the Ministry of Healthcare of Russia, academician of the Russian Academy of Sciences, president of the Russian scientific medical society of internal medicine (RNMSIM) Address: 127473, Moscow, 20/1 Delegatskaya Str. E-mail: anatmartynov@mail.ru


Similar Articles


Бионика Медиа