DOI: https://dx.doi.org/10.18565/therapy.2023.6.156-165
Pilat T.L., Kuzmina L.P., Kolyaskina M.M., Anvarul N.A.
1) Academician N.F. Izmerov Scientific Research Institute of Labour Medicine, Moscow; 2) I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University)
1. Профессиональные заболевания органов дыхания. Национальное руководство. Под ред. акад. РАН Н.Ф. Измерова, акад. РАН А.Г. Чучалина. М.: ГЭОТАР-Медиа. 2015; 792 с. [Occupational respiratory diseases. National guide. Ed. by acad. of RAS Izmerov N.F., acad. of RAS Chuchalin A.G. Moscow: GEOTAR-Media. 2015; 792 pp. (In Russ.)]. ISBN: 978-5-9704-3574-8. 2. Melen E., Guerra S., Hallberg J. et al. Linking COPD epidemiology with pediatric asthma care: Implications for the patient and the physician. Pediatr Allergy Immunol. 2019; 30(6): 589–97. https://dx.doi.org/10.1111/pai.13054. 3. Gibson G., Loddenkemper R., Sibille Y., Lundback B. Childhood Asthma. European Lung White Book. 2nd ed. European Respiratory Society; Sheffield, UK. 2013; pp. 126–37. 4. Guo C.-H., Liu P.J., Lin K.P., Chen P.C. Nutritional supplement therapy improves oxidative stress, immune response, pulmonary function, and quality of life in allergic asthma patients: An open-label pilot study. Altern Med Rev. 2012; 17(1): 42–56. 5. Kocyigit A., Armutcu F., Gurel A., Ermis B. Alterations in plasma essential trace elements selenium, manganese, zinc, copper, and iron concentrations and the possible role of these elements on oxidative status in patients with childhood asthma. Biol Trace Elem Res. 2004; 97(1): 31–41. https://dx.doi.org/10.1385/BTER:97:1:31. 6. Devirgiliis C., Zalewski P.D., Perozzi G., Murgia C. Zinc fluxes and zinc transporter genes in chronic diseases. Mutat Res. 2007; 622(1–2): 84–93. https://dx.doi.org/10.1016/j.mrfmmm.2007.01.013. 7. Institute of Medicine (US) Committee on Examination of Front-of-Package Nutrition Rating Systems and Symbols; Wartella E.A., Lichtenstein A.H., Boon C.S., editors. Front-of-package nutrition rating systems and symbols: Phase I report. Washington (DC): National Academies Press (US). 2010. 8. Berthon B.S., Macdonald Wicks L.K., Gibson P.G. et al. Investigation of the association between dietary intake, disease severity and airway inflammation in asthma. Respirology. 2013; 18(3): 447–54. https://dx.doi.org/10.1111/resp.12015. 9. Jatakanon A., Uasuf C., Maziak W. et al. Neutrophilic inflammation in severe persistent asthma. Am J RespirCrit Care Med. 1999; 160(5 Pt 1): 1532–39. https://dx.doi.org/10.1164/ajrccm.160.5.9806170. 10. Institute of Medicine (US) Committee on the Assessment of Asthma and Indoor Air. Clearing the air: Asthma and indoor air exposures. Washington (DC): National Academies Press (US). 2000. Bookshelf ID: NBK224477. https://dx.doi.org/10.17226/9610. 11. Seyedrezazadeh E., Moghaddam M.P., Ansarin K. et al. Fruit and vegetable intake and risk of wheezing and asthma: A systematic review and meta-analysis. Nutr Rev. 2014; 72(7): 411–28. https://dx.doi.org/10.1111/nure.12121. 12. Vibhuti A., Arif E., Deepak D. et al. Correlation of oxidative status with BMI and lung function in COPD. Clin Biochem. 2007; 40(13–14): 958–63. https://dx.doi.org/10.1016/j.clinbiochem.2007.04.020. 13. Daga M.K., Chhabra R., Sharma B. et al. Effects of exogenous vitamin E supplementation on the levels of oxidants and antioxidants in chronic obstructive pulmonary disease. J Biosci. 2003; 28(1): 7–11. https://dx.doi.org/10.1007/BF02970125. 14. Paiva S.A., Godoy I., Vannucchi H. et al. Assessment of vitamin A status in chronic obstructive pulmonary disease patients and healthy smokers. Am J Clin Nutr. 1996; 64(6): 928–34. https://dx.doi.org/10.1093/ajcn/64.6.928. 15. Sha T., Li W., He H. et al. Causal relationship of genetically predicted serum micronutrients levels with sarcopenia: A Mendelian randomization study. Front Nutr. 2022; 9: 913155. https://dx.doi.org/10.3389/fnut.2022.913155. 16. Perez-Peiro M., Alvarado M., Martin-Ontiyuelo C. et al. Iron depletion in systemic and muscle compartments defines a specific phenotype of severe COPD in female and male patients: Implications in exercise tolerance. Nutrients. 2022; 14(19): 3929.https://dx.doi.org/10.3390/nu14193929. 17. Darago A., Klimczak M., Stragierowicz J. et al. The effect of zinc, selenium, and their combined supplementation on androgen receptor protein expression in the prostate lobes and serum steroid hormone concentrations of Wistar rats. Nutrients. 2020; 12(1): 153.https://dx.doi.org/10.3390/nu12010153. 18. Gouzi F., Maury J., Heraud N. et al. Additional effects of nutritional antioxidant supplementation on peripheral muscle during pulmonary rehabilitation in COPD patients: A randomized controlled trial. Oxid Med Cell Longev. 2019; 2019: 5496346.https://dx.doi.org/10.1155/2019/5496346. 19. Welch A. Nutritional influences on age-related skeletal muscle loss. Proc Nutr Soc. 2014; 73(1): 16–33.https://dx.doi.org/10.1017/S0029665113003698. 20. Ruljancic N., Popovic-Grle S., Rumenjak V. et al. COPD: Magnesium in the plasma and polymorphonuclear cells of patients during a stable phase. COPD. 2007; 4(1): 41–47. https://dx.doi.org/10.1080/15412550601169513. 21. Ahmadi A., Eftekhari M., Mazloom Z. et al. Fortified whey beverage for improving muscle mass in chronic obstructive pulmonary disease: A single-blind, randomized clinical trial. Respir Res. 2020; 21(1): 216. https://dx.doi.org/10.1186/s12931-020-01466-1. 22. Scott D., Blizzard L., Fell J. et al. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: The Tasmanian older adult cohort study. J Am Geriatr Soc. 2010; 58(11): 2129–34.https://dx.doi.org/10.1111/j.1532-5415.2010.03147.x. 23. Dominguez L., Barbagallo M., Lauretani F. et al. Magnesium and muscle performance in older persons: The Inchianti study.Am J Clin Nutr. 2006; 84(2): 419–26. https://dx.doi.org/10.1093/ajcn/84.1.419. 24. Дайхес Н.А., Пилат Т.Л., Буркин А.В. с соавт. Эффективность детоксикационного специализированного питания при онкологических заболеваниях. Онкология. Журнал им. П.А. Герцена. 2020; 9(6): 59–66. [Daikhes N.A., Pilat T.L., Burkin A.V. et al. The effectiveness of specialized detoxification nutrition for cancers. Onkologiya. Zhurnal imeni P.A. Gertsena = P.A. Herzen Journal of Oncology. 2020; 9(6): 59–66 (In Russ.)]. https://dx.doi.org/10.17116/onkolog2020906159. EDN: LFHNWO. 25. Пилат Т.Л. Специализированные пищевые продукты диетического питания в онкологической практике. Медицинский совет. 2020; (20): 111–117. [Pilat T.L. Specialized dietary food products in oncological practice. Meditsinskiy sovet = Medical Council. 2020; (20): 111–117 (In Russ.)]. https://dx.doi.org/10.21518/2079-701X-2020-20-111-117. EDN: YDAMEE. 26. Пилат Т.Л., Истомин А.В., Гордеева Е.А., Ханферьян Р.А. Может ли детоксикационное питание быть вспомогательным средством при лечении и реабилитации больных, инфицированных вирусом COVID-19? Лечащий врач. 2021; (4): 43–49. [Pilat T.L., Istomin A.V., Gordeeva E.A., Khanferyan R.A. Can detox nutrition be an adjunct in the treatment and rehabilitation of patients infected with the COVID-19 virus? Lechashchiy vrach = Attending Physician. 2021; (4): 43–49 (In Russ.)].https://dx.doi.org/10.51793/OS.2021.99.23.008. EDN: AUQICE. 27. Пилат Т.Л., Алексеенко С.Н., Крутова В.А. с соавт. Проблемы питания больных COVID-19-вирусной инфекцией и возможности нутритивной коррекции нарушений. Медицинский совет. 2021; (4): 144–154. [Pilat T.L., Alekseenko S.N., Krutova V.A. et al. Nutritional problems of patients infected with COVID-19 and potential for nutritional management of disorders. Meditsinskiy sovet = Medical Council. 2021; (4): 144–154 (In Russ.)]. https://dx.doi.org/10.21518/2079-701X-2021-4-144-154. EDN: UWARAI. 28. Пилат Т.Л., Кузьмина Л.П., Коляскина М.М. с соавт. Специализированная нутритивная поддержка пациентов с СOVID-19 диетическими лечебными продуктами питания в условиях стационара. Терапия. 2021; 7(2): 112–118. [Pilat T.L., Kuzmina L.P., Kolyaskina M.M. et al. Specialized nutritional support of hospitalized patients with COVID-19 by means of dietary medicinal food products. Terapiya = Therapy. 2021; 7(2): 112–118 (In Russ.)]. https://dx.doi.org/10.18565/therapy.2021.2.153-159. EDN: BFWJKF.
Tatiana L. Pilat, MD, leading researcher at Academician N.F. Izmerov Scientific Research Institute of Labour Medicine. Address: 105275, Moscow, 31 Budennogo Avenue. E-mail: tpilat@leovit.ru
ORCID: https://orcid.org/0000-0002-5930-8849
Lyudmila P. Kuzmina, PhD in Biological Sciences, professor, deputy director for research work of Academician N.F. Izmerov Scientific Research Institute of Labour Medicine, professor of the Department of occupational medicine, aviation, space and diving medicine, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University). Address: 105275, Moscow, 31 Budennogo Avenue. E-mail: kuzmina@irioh.ru
ORCID: https://orcid.org/0000-0003-3186-8024
Maria M. Kolyaskina, PhD in Medical Sciences, senior researcher at the Laboratory of biomedical research of Academician N.F. Izmerov Scientific Research Institute of Labour Medicine, lecturer at the Department of labour medicine, aviation, space and diving medicine, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University). Address: 105275, Moscow, 31 Budennogo Avenue. E-mail: koliaskina.mm@irioh.ru
ORCID: https://orcid.org/0000-0001-5356-1598. SPIN-code: 9987-1559
Nana A. Anvarul, PhD in Medical Sciences, senior researcher at the Clinical Department of occupational and industrially caused diseases of the Laboratory of biomedical research, Academician N.F. Izmerov Scientific Research Institute of Labour Medicine. Address: 105275, Moscow, 31 Budennogo Avenue.
E-mail: anvarul@irioh.ru