Поздняя лимбическая ТДП-43 энцефалопатия: новая нозологическая форма деменции


DOI: https://dx.doi.org/10.18565/therapy.2021.8.164-171

Е.А. Катунина

1) ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, г. Москва; 2) ФГБУ «Федеральный центр мозга и нейротехнологий» ФМБА России, г. Москва
Аннотация. Увеличение средней продолжительности жизни – одна из причин роста распространенности когнитивных расстройств, прежде всего связанных с нейродегенеративными заболеваниями. Развитие методов структурной и функциональной нейровизуализации, технологий гистохимических исследований позволили выделить новые формы деменции, обусловленные накоплением токсичных белковых продуктов. К числу таких деменций относится поздняя лимбическая ТДП-43 энцефалопатия, диагностические критерии которой были опубликованы в 2019 г. Отличительными ее чертами являются позднее начало (у лиц в возрасте 80 лет и старше), преобладание амнестического синдрома при отсутствии речевых и поведенческих расстройств, а также частое ее сочетание с гиппокампальным склерозом. Предлагаемый обзор посвящен патогенетическим и клиническим особенностям этой новой формы деменции.

Литература



  1. Nelson P.T., Dennis W., Dickson D.W. et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): Consensus working group report. Brain. 2019; 142(6): 1503-1527. doi: 10.1093/brain/awz099.

  2. Cohen T.J., Lee V.M., Trojanowski J.Q. TDP-43 functions and pathogenic mechanisms implicated in TDP-43 proteinopathies. Trends Mol Med. 2011; 17(11): 659–67. doi: 10.1016/j.molmed.2011.06.004

  3. Guo L., Shorter J. Biology and pathobiology of TDP-43 and emergent therapeutic strategies. Cold Spring Harb Perspect Med. 2017; 7(9): a024554. doi: 10.1101/cshperspect.a024554.

  4. Neumann M., Sampathu D.M., Kwong L.K. et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006; 314(5796): 130–33. doi: 10.1126/science.1134108.

  5. Cairns N.J., Bigio E.H., Mackenzie I.R. et al. Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol. 2007; 114(1): 5–22. doi: 10.1007/s00401-007-0237-2.

  6. Nelson P.T., Gal Z., Wang W.X. et al. TDP-43 proteinopathy in aging: associations with risk-associated gene variants and with brain parenchymal thyroid hormone levels. Neurobiol Dis. 2019; 125: 67–76. doi: 10.1016/j.nbd.2019.01.013.

  7. Kuslansky G., Verghese J., Dickson D. et al. Hippocampal sclerosis: cognitive consequences and contribution to dementia. Neurology. 2004; 62: A128–29.

  8. Lippa C.F., Dickson D.W. Hippocampal sclerosis dementia: expanding the phenotypes of frontotemporal dementias? Neurology. 2004; 63(3): 414–15. doi: 10.1212/01.wnl.0000136241.71716.72.

  9. Nelson P.T., Smith C.D., Abner E.L. et al. Hippocampal sclerosis of aging, a prevalent and high-morbidity brain disease. Acta Neuropathol. 2013; 126(2): 161–77. doi: 10.1007/s00401-013-1154-1.

  10. Nelson P.T., Trojanowski J.Q., Abner E.L. et al. «New old pathologies»: AD, PART, and cerebral age-related TDP-43 with sclerosis (CARTS). J Neuropathol Exp Neurol. 2016; 75(6): 482–98. doi: 10.1093/jnen/nlw033

  11. Dutra J.R., Cortes E.P., Vonsattel J.P. Update on hippocampal sclerosis. Curr Neurol Neurosci Rep. 2015; 15(10): 67. doi: 10.1007/s11910-015-0592-7.

  12. Amador-Ortiz C., Lin W.L., Ahmed Z. et al. TDP-43 immunoreactivity in hippocampal sclerosis and Alzheimer’s disease. Ann Neurol. 2007; 61(5): 435–45. doi: 10.1002/ana.21154.

  13. Dickson D.W., Davies P., Bevona C. et al. Hippocampal sclerosis: A common pathological feature of dementia in very old (> or =80 years of age) humans. Acta Neuropathol. 1994; 88(3): 212–21. doi: 10.1007/BF00293396.

  14. Crystal H.A., Dickson D., Davies P. et al. The relative frequency of «dementia of unknown etiology» increases with age and is nearly 50% in nonagenarians. Arch Neurol. 2000; 57(5): 713–19. doi: 10.1001/archneur.57.5.713.

  15. Barker W.W., Luis C.A., Kashuba A. et al. Relative frequencies of Alzheimer disease, Lewy body, vascular and frontotemporal dementia, and hippocampal sclerosis in the State of Florida Brain Bank. Alzheimer Dis Assoc Disord. 2002; 16(4): 203–12. doi: 10.1097/00002093-200210000-00001.

  16. Leverenz J.B., Agustin C.M., Tsuang D. et al. Clinical and neuropathological characteristics of hippocampal sclerosis: A community-based study. Arch Neurol. 2002; 59(7): 1099–106. doi: 10.1001/archneur.59.7.1099.

  17. White L., Petrovitch H., Hardman J. et al. Cerebrovascular pathology and dementia in autopsied Honolulu-Asia Aging Study participants. Ann N Y Acad Sci. 2002; 977: 9–23. doi: 10.1111/j.1749-6632.2002.tb04794.x.

  18. Zarow C., Vinters H.V., Ellis W.G. et al. Correlates of hippocampal neuron number in Alzheimer’s disease and ischemic vascular dementia. Ann Neurol. 2005; 57(6): 896–903. doi: 10.1002/ana.20503.

  19. Attems J., Jellinger K.A. Hippocampal sclerosis in Alzheimer disease and other dementias. Neurology. 2006; 66(5): 775. doi: 10.1212/01.wnl.0000200959.50898.26.

  20. Brayne C., Richardson K., Matthews F.E. et al. Neuropathological correlates of dementia in over-80-year-old brain donors from the population-based Cambridge city over-75 s cohort (CC75C) study. J Alzheimers Dis. 2009; 18(3): 645–58. doi: 10.3233/JAD-2009-1182.

  21. Nelson P.T., Schmitt F.A., Lin Y. et al. Hippocampal sclerosis in advanced age: Clinical and pathological features. Brain. 2011; 134(Pt 5): 1506–18. doi: 10.1093/brain/awr053.

  22. Zarow C., Weiner M.W., Ellis W.G. et al. Prevalence, laterality, and comorbidity of hippocampal sclerosis in an autopsy sample. Brain Behav. 2012; 2(4): 435–42. doi: 10.1002/brb3.66.

  23. Kero M., Raunio A., Polvikoski T. et al. Hippocampal sclerosis in the oldest old: a Finnish population-based study. J Alzheimers Dis. 2018; 63(1): 263–72. doi: 10.3233/JAD-171068.

  24. Lee E.B., Lee V.M., Trojanowski J.Q. et al. TDP-43 immunoreactivity in anoxic, ischemic and neoplastic lesions of the central nervous system. Acta Neuropathol. 2008; 115(3): 305–11. doi: 10.1007/s00401-007-0331-5.

  25. Josephs K.A., Ahmed Z., Katsuse O. et al. Neuropathologic features of frontotemporal lobar degeneration with ubiquitin-positive inclusions with progranulin gene (PGRN) mutations. J Neuropathol Exp Neurol. 2007; 66(2): 142–51. doi: 10.1097/nen.0b013e31803020cf.

  26. Thom M., Eriksson S., Martinian L. et al. Temporal lobe sclerosis associated with hippocampal sclerosis in temporal lobe epilepsy: Neuropathological features. J Neuropathol Exp Neurol. 2009; 68(8): 928–38. doi: 10.1097/NEN.0b013e3181b05d67.

  27. Yokota O., Davidson Y., Bigio E.H. et al. Phosphorylated TDP-43 pathology and hippocampal sclerosis in progressive supranuclear palsy. Acta Neuropathol. 2010; 120(1): 55–66. doi: 10.1007/s00401-010-0702-1.

  28. Malek-Ahmadi M., Kahlon V., Adler C.H. et al. Prevalence of hippocampal sclerosis in a clinicopathologically characterized cohort. Clin Exp Med Sci. 2013; 1(7): 317–27. doi: 10.12988/cems.2013.13026.

  29. Murray M.E., Bieniek K.F., Banks G.M. et al. Progressive amnestic dementia, hippocampal sclerosis, and mutation in C9ORF72. Acta Neuropathol. 2013; 126(4): 545–54. doi: 10.1007/s00401-013-1161-2.

  30. Ling H., Morris H.R., Neal J.W. et al. Mixed pathologies including chronic traumatic encephalopathy account for dementia in retired association football (soccer) players. Acta Neuropathol. 2017; 133(3): 337–52. doi: 10.1007/s00401-017-1680-3.

  31. Popkirov S., Ismail F.S., Gronheit W. et al. Progressive hippocampal sclerosis after viral encephalitis: potential role of NMDA receptor antibodies. Seizure. 2017; 51: 6–8. doi: 10.1016/j.seizure.2017.07.006.

  32. Sen A., Dugan P., Perucca P. et al. The phenotype of bilateral hippocampal sclerosis and its management in «real life» clinical settings. Epilepsia. 2018; 59(7): 1410–20. doi: 10.1111/epi.14436.

  33. Dickson D.W., Baker M., Rademakers R. Common variant in GRN is a genetic risk factor for hippocampal sclerosis in the elderly. Neurodegener Dis. 2010; 7(1–3): 170–74. doi: 10.1159/000289231.

  34. Pao W.C., Dickson D.W., Crook J.E. et al. Hippocampal sclerosis in the elderly: Genetic and pathologic findings, some mimicking Alzheimer disease clinically. Alzheimer Dis Assoc Disord. 2011; 25(4): 364–68. doi: 10.1097/WAD.0b013e31820f8f50.

  35. Beecham G.W., Hamilton K., Naj A.C. et al. Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet. 2014; 10(9): e1004606. doi: 10.1371/journal.pgen.1004606.

  36. Murray M.E., Cannon A., Graff-Radford N.R. et al. Differential clinicopathologic and genetic features of late-onset amnestic dementias. Acta Neuropathol. 2014; 128(3): 411–21. doi: 10.1007/s00401-014-1302-2.

  37. Nelson P.T., Estus S., Abner E.L. et al. ABCC9 gene polymorphism is associated with hippocampal sclerosis of aging pathology. Acta Neuropathol. 2014; 127(6): 825–43. doi: 10.1007/s00401-014-1282-2.

  38. Nelson P.T., Wang W.X., Partch A.B. et al. Reassessment of risk genotypes (GRN, TMEM106B, and ABCC9 variants) associated with hippocampal sclerosis of aging pathology. J Neuropathol Exp Neurol. 2015; 74(1): 75–84. doi: 10.1097/NEN.0000000000000151.

  39. Aoki N., Murray M.E., Ogaki K. et al. Hippocampal sclerosis in Lewy body disease is a TDP-43 proteinopathy similar to FTLD-TDP type A. Acta Neuropathol. 2015; 129: 53–64. doi: 10.1007/s00401-014-1358-z

  40. Katsumata Y., Nelson P.T., Ellingson S.R. et al. Gene-based association study of genes linked to hippocampal sclerosis of aging neuropathology: GRN, TMEM106B, ABCC9, and KCNMB2. Neurobiol Aging. 2017; 53: 193.e17–193.e25. doi: 10.1016/j.neurobiolaging.2017.01.003.

  41. Yang H.S., Yu L., White C.C. et al. Evaluation of TDP-43 proteinopathy and hippocampal sclerosis in relation to APOE epsilon4 haplotype status: a community-based cohort study. Lancet Neurol. 2018; 17(9): 773–81. doi: 10.1016/S1474-4422(18)30251-5.

  42. Baker M., Mackenzie I.R., Pickering-Brown S.M. et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006; 442(7105): 916–19. doi: 10.1038/nature05016.

  43. Boeve B.F., Baker M., Dickson D.W. et al. Frontotemporal dementia and parkinsonism associated with the IVS1+1G->A mutation in progranulin: a clinicopathologic study. Brain. 2006; 129(Pt 11): 3103–14. doi: 10.1093/brain/awl268.

  44. Cruts M., Gijselinck I., van der Zee J. et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006; 442(7105): 920–24. doi: 10.1038/nature05017.

  45. Van Deerlin V.M., Sleiman P.M., Martinez-Lage M. et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet. 2010; 42(3): 234–39. doi: 10.1038/ng.536.

  46. Nicholson A.M., Rademakers R. What we know about TMEM106B in neurodegeneration. Acta Neuropathol. 2016; 132(5): 639–51. doi: 10.1007/s00401-016-1610-9.

  47. Klein Z.A., Takahashi H., Ma M. et al. Loss of TMEM106B ameliorates lysosomal and frontotemporal dementia-related phenotypes in progranulin-deficient mice. Neuron. 2017; 95(2): 281–96.e6. doi: 10.1016/j.neuron.2017.06.026.

  48. Zhou X., Sun L., Brady O.A. et al. Elevated TMEM106B levels exaggerate lipofuscin accumulation and lysosomal dysfunction in aged mice with progranulin deficiency. Acta Neuropathol Commun. 2017; 5(1): 9. doi: 10.1186/s40478-017-0412-1.

  49. Robinson J.L., Lee E.B., Xie S.X. et al. Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain. 2018; 141(7): 2181–93. doi: 10.1093/brain/awy146.

  50. Wennberg A.M., Tosakulwong N., Lesnick T.G. et al. Association of apolipoprotein E epsilon4 with transactive response DNA-binding protein 43. JAMA Neurol. 2018; 75(11): 1347–54. doi: 10.1001/jamaneurol.2018.3139.

  51. Trieu T., Sajjadi S.A., Kawas C.H. et al. Risk factors of hippocampal sclerosis in the oldest old: the 90+ study. Neurology. 2018; 91(19): e1788–98. doi: 10.1212/WNL.0000000000006455.

  52. Ittermann T., Wittfeld K., Nauck M. et al. High thyrotropin is associated with reduced hippocampal volume in a population-based study from Germany. Thyroid. 2018; 28(11): 1434–42. doi: 10.1089/thy.2017.0561.

  53. Ou S.H., Wu F., Harrich D. et al. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol. 1995; 69(6): 3584–96. doi: 10.1128/JVI.69.6.3584-3596.1995.

  54. Woo J.A., Liu T., Trotter C. et al. Loss of function CHCHD10 mutations in cytoplasmic TDP-43 accumulation and synaptic integrity. Nat Commun. 2017; 8: 15558. doi: 10.1038/ncomms15558.

  55. Jo M., Lee S., Jeon Y.M. et al. The role of TDP-43 propagation in neurodegenerative diseases: integrating insights from clinical and experimental studies. Exp Mol Med. 2020; 52(10): 1652–62. doi: 10.1038/s12276-020-00513-7.

  56. Diaper D.C., Adachi Y., Sutcliffe B. et al. Loss and gain of Drosophila TDP-43 impair synaptic efficacy and motor control leading to age-related neurodegeneration by loss-of-function phenotypes. Hum Mol. 2013; 22(8): 1539–57. doi: 10.1093/hmg/ddt005.

  57. Nag S., Yu L., Boyle P.A. et al. TDP-43 pathology in anterior temporal pole cortex in aging and Alzheimer’s disease. Acta Neuropathol Commun. 2018; 6(1): 33. doi: 10.1186/s40478-018-0531-3.

  58. Josephs K.A., Whitwell J.L., Knopman D.S. et al. Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology. 2008; 70(19 Pt 2): 1850–57. doi: 10.1212/01.wnl.0000304041.09418.b1.

  59. Geser F., Robinson J.L., Malunda J.A. et al. Pathological 43-kDa transactivation response DNA-binding protein in older adults with and without severe mental illness. Arch Neurol. 2010; 67(10): 1238–50. doi: 10.1001/archneurol.2010.254.

  60. Josephs K.A., Dickson D.W. TDP-43 in the olfactory bulb in Alzheimer’s disease. Neuropathol Appl Neurobiol. 2016; 42(4): 390–93. doi: 10.1111/nan.12309.

  61. Nelson P.T., Abner E.L., Patel E. et al. The amygdala as a locus of pathologic misfolding in neurodegenerative diseases. J Neuropathol Exp Neurol. 2018; 77(1): 2–20. doi: 10.1093/jnen/nlx099.

  62. Power M.C., Mormino E., Soldan A. et al. Combined neuropathological pathways account for age-related risk of dementia. Ann Neurol. 2018; 84(1): 10–22. doi: 10.1002/ana.25246.

  63. Nag S., Yu L., Capuano A.W. et al. Hippocampal sclerosis and TDP-43 pathology in aging and Alzheimer disease. Ann Neurol. 2015; 77(6): 942–52. doi: 10.1002/ana.24388.

  64. Nag S., Yu L., Wilson R.S. et al. TDP-43 pathology and memory impairment in elders without pathologic diagnoses of AD or FTLD. Neurology. 2017; 88(7): 653–60. doi: 10.1212/WNL.0000000000003610.

  65. Wilson R.S., Yang J., Yu L. et al. Postmortem neurodegenerative markers and trajectories of decline in cognitive systems. Neurology. 2019; 92(8): e831–e840. doi: 10.1212/WNL.0000000000006949.

  66. Josephs K.A., Murray M.E., Whitwell J.L. et al. Staging TDP-43 pathology in Alzheimer’s disease. Acta Neuropathol. 2014; 127(3): 441–50. doi: 10.1007/s00401-013-1211-9.

  67. Josephs K.A., Whitwell J.L., Tosakulwong N. et al. TAR DNA-binding protein 43 and pathological subtype of Alzheimer’s disease impact clinical features. Ann Neurol. 2015; 78(5): 697–709. doi: 10.1002/ana.24493.

  68. Josephs K.A., Whitwell J.L., Weigand S.D. et al. TDP-43 is a key player in the clinical features associated with Alzheimer’s disease. Acta Neuropathol. 2014; 127(6): 811–24. doi: 10.1007/s00401-014-1269-z.

  69. Herman A.M., Khandelwal P.J., Stanczyk B.B. et al. β-amyloid triggers ALS-associated TDP-43 pathology in AD models. Brain Res. 2011; 1386: 191–99. doi: 10.1016/j.brainres.2011.02.052.

  70. Nelson P.T., Head E., Schmitt F.A. et al. Alzheimer’s disease is not «brain aging»: Neuropathological, genetic, and epidemiological human studies. Acta Neuropathol. 2011; 121(5): 571–87. doi: 10.1007/s00401-011-0826-y.

  71. Brenowitz W.D., Monsell S.E., Schmitt F.A. et al. Hippocampal sclerosis of aging is a key Alzheimer’s disease mimic: clinical-pathologic correlations and comparisons with both alzheimer’s disease and non-tauopathic frontotemporal lobar degeneration. J Alzheimers Dis. 2014; 39(3): 691–702. doi: 10.3233/JAD-131880.

  72. Hasegawa M., Arai T., Nonaka T. et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Ann Neurol. 2008; 64(1): 60–70. doi: 10.1002/ana.21425.

  73. Cairns N.J., Neumann M., Bigio E.H. et al. TDP-43 in familial and sporadic frontotemporal lobar degeneration with ubiquitin inclusions. Am J Pathol. 2007; 171(1): 227–40. doi: 10.2353/ajpath.2007.070182.

  74. Weihl C.C., Temiz P., Miller S.E. et al. TDP-43 accumulation in inclusion body myopathy muscle suggests a common pathogenic mechanism with frontotemporal dementia. J Neurol Neurosurg Psychiatry. 2008; 79(10): 1186–89. doi: 10.1136/jnnp.2007.131334.

  75. Robinson J.L., Porta S., Garrett F.G. et al. Limbic-predominant age-related TDP-43 encephalopathy differs from frontotemporal lobar degeneration. Brain. 2020; 143(9): 2844–57. doi: 10.1093/brain/awaa219.

  76. Ighodaro E.T., Jicha G.A., Schmitt F.A. et al. Hippocampal sclerosis of aging can be segmental: two cases and review of the literature. J Neuropathol Exp Neurol. 2015; 74(7): 642–52. doi: 10.1097/NEN.0000000000000204.

  77. Agrawal S., Yu L., Kapasi A. et al. Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change and microvascular pathologies in community-dwelling older persons. Brain Pathol. 2021; 31(3): e12939. doi: 10.1111/bpa.12939.

  78. Katsumata Y., Fardo D.W., Kukull W.A. et al. Dichotomous scoring of TDP-43 proteinopathy from specific brain regions in 27 academic research centers: associations with Alzheimer’s disease and cerebrovascular disease pathologies. Acta Neuropathol Commun. 2018; 6(1): 142. doi: 10.1186/s40478-018-0641-y.

  79. Thammisetty S.S., Pedragosa J., Weng Y.C. et al. Age-related deregulation of TDP-43 after stroke enhances NF-kappaB-mediated inflammation and neuronal damage. J Neuroinflammation. 2018; 15(1): 312. doi: 10.1186/s12974-018-1350-y.

  80. Budini M., Baralle F.E., Buratti E. Targeting TDP-43 in neurodegenerative diseases. Expert Opin Ther Targets. 2014; 18(6): 617–32. doi: 10.1517/14728222.2014.896905.

  81. Клинические рекомендации. Когнитивные расстройства у людей пожилого и старческого возраста. Общественная организация «Российское общество психиатров», Общероссийская общественная организация «Российская ассоциация геронтологов и гериатров». 2020. Рубрикатор клинических рекомендаций Минздрава России. Доступ: https://cr.minzdrav.gov.ru/schema/617_1 (дата обращения – 01.10.2021).

  82. Cheng Q., Fang L., Feng D. et al. Memantine ameliorates pulmonary inflammation in a mice model of COPD induced by cigarette smoke combined with LPS. Biomed Pharmacother. 2019; 109: 2005–13. doi: 10.1016/j.biopha.2018.11.002.

  83. Caumont A.S., Octave J.N., Hermans E. Amantadine and memantine induce the expression of the glial cell line-derived neurotrophic factor in C6 glioma cells. Neurosci Lett. 2006; 394(3): 196–201. doi: 10.1016/j.neulet.2005.10.027.

  84. Reisberg B., Doody R., Stoffler A. et al.; Memantine Study Group. Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med. 2003; 348(14): 1333–41. doi: 10.1056/NEJMoa013128.

  85. Liang J., Li J., Jia R. et al. Identification of the optimal cognitive drugs among Alzheimer’s disease: a Bayesian meta-analytic review. Clin Interv Aging. 2018; 13: 2061–73. doi: 10.2147/CIA.S184968.

  86. Van Dyck C.H., Schmitt F.A., Olin J.T. Memantine MEM-MD-02 Study Group. A responder analysis of memantine treatment in patients with Alzheimer disease maintained on donepezil. Am J Geriatr Psychiatry. 2006; 14(5): 428–37. doi: 10.1097/01.JGP.0000203151.17311.38.

  87. Grossberg G.T., Pejović V., Miller M.L. et al. Memantine therapy of behavioral symptoms in community-dwelling patients with moderate to severe Alzheimer’s disease. Dement Geriatr Cogn Disord. 2009; 27(2): 164–72. doi: 10.1159/000200013.

  88. Ferris S., Ihl R., Robert P. et al. Treatment effects of Memantine on language in moderate to severe Alzheimer’s disease patients. Alzheimers Dement. 2009; 5(5): 369–74. doi: 10.1016/j.jalz.2009.05.604.

  89. Jin B.R., Liu H.Y. Comparative efficacy and safety of cognitive enhancers for treating vascular cognitive impairment: systematic review and Bayesian network meta-analysis. Neural Regen Res. 2019; 14(5): 805–16. doi: 10.4103/1673-5374.249228.

  90. Gauthier S., Loft H., Cummings J. Improvement in behavioural symptoms in patients with moderate to severe Alzheimer’s disease by memantine: a pooled data analysis. Int J Geriatr Psychiatry. 2008; 23(5): 537–45. doi: 10.1002/gps.1949.

  91. Shi X., Lin X., Hu R. et al. Toxicological differences between NMDA receptor antagonists and cholinesterase inhibitors. Am J Alzheimers Dis Other Demen. 2016; 31(5): 405–12. doi: 10.1177/1533317515622283.

  92. Bond M., Rogers G., Peters J. et al. The effectiveness and cost-effectiveness of donepezil, galantamine, rivastigmine and memantine for the treatment of Alzheimer’s disease (review of Technology Appraisal No. 111): A systematic review and economic model. Health Technol Assess. 2012; 16(21): 1–470. doi: 10.3310/hta16210.

  93. Jones R.W., Bayer A., Inglis F. et al. Safety and tolerability of once-daily versus twice-daily memantine: a randomised, double-blind study in moderate to severe Alzheimer’s disease. Int J Geriatr Psychiatry. 2007; 22(3): 258–62. doi: 10.1002/gps.1752.


Об авторах / Для корреспонденции


Елена Анатольевна Катунина, д.м.н., профессор, профессор кафедры неврологии, нейрохирургии и медицинской генетики лечебного факультета ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, руководитель отдела нейродегенеративных заболеваний ФГБУ «Федеральный центр мозга и нейротехнологий» ФМБА России. Адрес: 119415, г. Москва, Островитянова ул., д. 1., стр. 10. E-mail: elkatunina@mail.ru


Похожие статьи


Бионика Медиа