Влияние тромбоцитов на течение ревматоидного артрита и сердечно-сосудистый риск


DOI: https://dx.doi.org/10.18565/therapy.2021.10.78-88

В.И. Мазуров, Е.С. Мельников, Р.А. Башкинов

1) ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, г. Санкт-Петербург 2) СПб ГБУЗ «Клиническая ревматологическая больница № 25», г. Санкт-Петербург
Аннотация. Распространенность ревматоидного артрита (РА) в мире оценивается в 0,46%. Среди внесуставных проявлений этого заболевания особенно выделяется патология органов сердечно-сосудистой системы, которая, по данным литературы, является основной причиной смертности среди пациентов с РА, достигая 39,6%. Кроме традиционных кардиоваскулярных факторов риска, независимым предиктором сердечно-сосудистых заболеваний (ССЗ) служит хроническое системное воспаление, характерное для РА. Этот факт нашел отражение в современных шкалах расчета риска сердечно-сосудистых осложнений (ССО), включающих наличие системного воспаления (в том числе при РА). Распространенность повышения уровня тромбоцитов в крови у пациентов с РА неизвестна. Остается не до конца изученной роль тромбоцитоза в течении РА и его вклад в формирование ССЗ и увеличение риска ССО. Цель настоящего обзора – представить данные международной литературы, в которых изучалась связь тромбоцитов и повышения их уровня при РА с течением воспалительного процесса и их влияние на органы сердечно-сосудистой системы.

Литература



  1. Мазуров В.И., Гайдукова И.З., Беляева И.Б. Клиническая ревматология. 3-е издание, переработанное и дополненное. Руководство для врачей. Под ред. В.И. Мазурова. М.: Е-ното. 2021; 696 с.

  2. Smolen J.S., Aletaha D., McInnes I.B. Rheumatoid arthritis. Lancet. 2016; 388(10055): 2023–38. doi: 10.1016/S0140-6736(16)30173-8.

  3. Галушко Е.А., Насонов Е.Л. Распространенность ревматических заболеваний в России. Альманах клинической медицины. 2018; 1: 32–39.

  4. Almutairi K., Nossent J., Preen D. et al. 749. The global prevalence of Rheumatoid Arthritis: A meta-analysis. Int J Epidemiol. 2021; 50(1): September dyab168.034. doi: 10.1093/ije/dyab168.034.

  5. Sokka T., Abelson B., Pincus T. Mortality in rheumatoid arthritis: 2008 update. Clin Exp Rheumatol. 2008; 26(5 Suppl 51): S35–S61.

  6. Avina-Zubieta J.A., Thomas J., Sadatsafavi M. et al. Risk of incident cardiovascular events in patients with rheumatoid arthritis: a meta-analysis of observational studies. Ann Rheum Dis. 2012; 71(9): 1524–29. doi: 10.1136/annrheumdis-2011-200726.

  7. Avina-Zubieta J.A., Choi H.K., Sadatsafavi M. et al. Risk of cardiovascular mortality in patients with rheumatoid arthritis: a meta-analysis of observational studies. Arthritis Rheum. 2008; 59(12): 1690–97. doi: 10.1002/art.24092.

  8. Hansildaar R., Vedder D., Baniaamam M. et al. Cardiovascular risk in inflammatory arthritis: rheumatoid arthritis and gout. Lancet Rheumatol. 2021; 3(1): e58–e70. doi: 10.1016/S2665-9913(20)30221-6.

  9. Arts E.E., Popa C., Den Broeder A.A. et al. Performance of four current risk algorithms in predicting cardiovascular events in patients with early rheumatoid arthritis. Ann Rheum Dis. 2015; 74(4): 668–74. doi: 10.1136/annrheumdis-2013-204024.

  10. Crowson C.S., Matteson E.L., Roger V.L. et al. Usefulness of risk scores to estimate the risk of cardiovascular disease in patients with rheumatoid arthritis. Am J Cardiol. 2012; 110(3): 420–24. doi: 10.1016/j.amjcard.2012.03.044.

  11. Hippisley-Cox J., Coupland C., Vinogradova Y. et al. Predicting cardiovascular risk in England and Wales: Prospective derivation and validation of QRISK2. BMJ. 2008; 336(7659): 1475–82. doi: 10.1136/bmj.39609.449676.25.

  12. Agca R., Heslinga S.C., Rollefstad S. et al. EULAR recommendations for cardiovascular disease risk management in patients with rheumatoid arthritis and other forms of inflammatory joint disorders: 2015/2016 update. Ann Rheum Dis. 2017; 76(1): 17–28. doi: 10.1136/annrheumdis-2016-209775.

  13. Arts E.E., Popa C.D., Den Broeder A.A. et al. Prediction of cardiovascular risk in rheumatoid arthritis: performance of original and adapted SCORE algorithms. Ann Rheum Dis. 2016; 75(4): 674–80. doi: 10.1136/annrheumdis-2014-206879.

  14. Solomon D.H., Greenberg J., Curtis J.R. et al. Derivation and internal validation of an expanded cardiovascular risk prediction score for rheumatoid arthritis: a Consortium of Rheumatology Researchers of North America Registry Study

  15. Machlus K.R., Thon J.N., Italiano J.E. Jr. Interpreting the developmental dance of the megakaryocyte: a review of the cellular and molecular processes mediating platelet formation. Br J Haematol. 2014; 165(2): 227–36. doi: 10.1111/bjh.12758.

  16. Garraud O., Cognasse F. Are Platelets Cells? And if yes, are they immune cells? Front Immunol. 2015; 6: 70. doi: 10.3389/fimmu.2015.00070.

  17. Amaya-Amaya J., Montoya-Sanchez L., Rojas-Villarraga A. Cardiovascular involvement in autoimmune diseases. Biomed Res Int. 2014; 2014: 367359. doi: 10.1155/2014/367359.

  18. Golebiewska E.M., Poole A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015; 29(3): 153–62. doi: 10.1016/j.blre.2014.10.003.

  19. Kaushansky K. The molecular mechanisms that control thrombopoiesis. J Clin Invest. 2005; 115(12): 3339–47. doi: 10.1172/JCI26674.

  20. Harrison P., Goodall A.H. «Message in the platelet» – more than just vestigial mRNA! Platelets. 2008; 19(6): 395–404. doi: 10.1080/09537100801990582.

  21. Jackson M., Ahmad Y., Bruce I.N. et al. Activation of transforming growth factor-beta1 and early atherosclerosis in systemic lupus erythematosus. Arthritis Res Ther. 2006; 8(3): R81. doi: 10.1186/ar1951.

  22. Weicht B., Maitz P., Kandler B. et al. Activated platelets positively regulate RANKL-mediated osteoclast differentiation. J Cell Biochem. 2007; 102(5): 1300–07. doi: 10.1002/jcb.21360.

  23. Gawaz M., Brand K., Dickfeld T. et al. Platelets induce alterations of chemotactic and adhesive properties of endothelial cells mediated through an interleukin-1-dependent mechanism. Implications for atherogenesis. Atherosclerosis. 2000; 148(1): 75–85. doi: 10.1016/s0021-9150(99)00241-5.

  24. Kaplanski G., Farnarier C., Kaplanski S. et al. Interleukin-1 induces interleukin-8 secretion from endothelial cells by a juxtacrine mechanism. Blood. 1994; 84(12): 4242–48.

  25. Langer H.F., Gawaz M. Platelet-vessel wall interactions in atherosclerotic disease. Thromb Haemost. 2008; 99(3): 480–86. doi: 10.1160/TH07-11-0685.

  26. Elzey B.D., Sprague D.L., Ratliff T.L. The emerging role of platelets in adaptive immunity. Cell Immunol. 2005; 238(1): 1–9. doi: 10.1016/j.cellimm.2005.12.005.

  27. Blair P., Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev. 2009; 23(4): 177–89. doi: 10.1016/j.blre.2009.04.001.

  28. Sprague D.L., Elzey B.D., Crist S.A. et al. Platelet-mediated modulation of adaptive immunity: unique delivery of CD154 signal by platelet-derived membrane vesicles. Blood. 2008; 111(10): 5028–36. doi: 10.1182/blood-2007-06-097410.

  29. Inwald D.P., McDowall A., Peters M.J. et al. CD40 is constitutively expressed on platelets and provides a novel mechanism for platelet activation. Circ Res. 2003; 92(9): 1041–48. doi: 10.1161/01.RES.0000070111.98158.6C.

  30. Rendu F., Brohard-Bohn B. The platelet release reaction: granules’ constituents, secretion and functions. Platelets. 2001; 12(5): 261–73. doi: 10.1080/09537100120068170.

  31. Łukasik Z.M., Makowski M., Makowska J.S. From blood coagulation to innate and adaptive immunity: the role of platelets in the physiology and pathology of autoimmune disorders. Rheumatol Int. 2018; 38(6): 959–74. doi: 10.1007/s00296-018-4001-9.

  32. Habets K.L., Huizinga T.W., Toes R.E. Platelets and autoimmunity. Eur J Clin Invest. 2013; 43(7): 746–57. doi: 10.1111/eci.12101.

  33. Kehrel B.E., Brodde M.F. State of the art in platelet function testing. Transfus Med Hemother. 2013; 40(2): 73–86. doi: 10.1159/000350469.

  34. Lood C., Tyden H., Gullstrand B. et al. Platelet activation and anti-phospholipid antibodies collaborate in the activation of the complement system on platelets in systemic lupus erythematosus. PLoS One. 2014; 9(6): e99386. doi: 10.1371/journal.pone.0099386.

  35. Gasparyan A.Y., Stavropoulos-Kalinoglou A., Mikhailidis D.P. et al. Platelet function in rheumatoid arthritis: Arthritic and cardiovascular implications. Rheumatol Int. 2011; 31(2): 153–64. doi: 10.1007/s00296-010-1446-x.

  36. Arman M., Krauel K. Human platelet IgG Fc receptor FcγRIIA in immunity and thrombosis. J Thromb Haemost. 2015; 13(6): 893–908. doi: 10.1111/jth.12905.

  37. Habets K.L., Trouw L.A., Levarht E.W. et al. Anti-citrullinated protein antibodies contribute to platelet activation in rheumatoid arthritis. Arthritis Res Ther. 2015; 17(1): 209. doi: 10.1186/s13075-015-0665-7.

  38. Sokolove J., Brennan M.J., Sharpe O. et al. Brief report: Citrullination within the atherosclerotic plaque: a potential target for the anti-citrullinated protein antibody response in rheumatoid arthritis. Arthritis Rheum. 2013; 65(7): 1719–24. doi: 10.1002/art.37961.

  39. Weyrich A.S., Zimmerman G.A. Platelets: Signaling cells in the immune continuum. Trends Immunol. 2004; 25(9): 489–95. doi: 10.1016/j.it.2004.07.003.

  40. Vazquez-Del Mercado M., Nunez-Atahualpa L., Figueroa-Sanchez M. et al. Serum levels of anticyclic citrullinated peptide antibodies, interleukin-6, tumor necrosis factor-α, and C-reactive protein are associated with increased carotid intima-media thickness: a cross-sectional analysis of a cohort of rheumatoid arthritis patients without cardiovascular risk factors. Biomed Res Int. 2015; 2015: 342649. doi: 10.1155/2015/342649.

  41. Verschoor A., Langer H.F. Crosstalk between platelets and the complement system in immune protection and disease. Thromb Haemost. 2013; 110(5): 910–19. doi: 10.1160/TH13-02-0102.

  42. Gerli R., Bartoloni Bocci E., Sherer Y. et al. Association of anti-cyclic citrullinated peptide antibodies with subclinical atherosclerosis in patients with rheumatoid arthritis. Ann Rheum Dis. 2008; 67(5): 724–25. doi: 10.1136/ard.2007.073718.

  43. Barbarroja N., Perez-Sanchez C., Ruiz-Limon P. et al. Anticyclic citrullinated protein antibodies are implicated in the development of cardiovascular disease in rheumatoid arthritis. Arterioscler Thromb Vasc Biol. 2014; 34(12): 2706–16. doi: 10.1161/ATVBAHA.114.304475.

  44. Boilard E., Nigrovic P.A., Larabee K. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. 2010; 327(5965): 580–83. doi: 10.1126/science.1181928.

  45. Kojima F., Naraba H., Sasaki Y. et al. Prostaglandin E2 is an enhancer of interleukin-1beta-induced expression of membrane-associated prostaglandin E synthase in rheumatoid synovial fibroblasts. Arthritis Rheum. 2003; 48(10): 2819–28. doi: 10.1002/art.11261.

  46. Bartok B., Firestein G.S. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunol Rev. 2010; 233(1): 233–55. doi: 10.1111/j.0105-2896.2009.00859.x.

  47. Reich N., Beyer C., Gelse K. et al. Microparticles stimulate angiogenesis by inducing ELR(+) CXC-chemokines in synovial fibroblasts. J Cell Mol Med. 2011; 15(4): 756–62. doi: 10.1111/j.1582-4934.2010.01051.x.

  48. Jungel A., Distler O., Schulze-Horsel U. et al. Microparticles stimulate the synthesis of prostaglandin E(2) via induction of cyclooxygenase 2 and microsomal prostaglandin E synthase 1. Arthritis Rheum. 2007; 56(11): 3564–74. doi: 10.1002/art.22980.

  49. Cloutier N., Tan S., Boudreau L.H. et al. The exposure of autoantigens by microparticles underlies the formation of potent inflammatory components: the microparticle-associated immune complexes. EMBO Mol Med. 2013; 5(2): 235–49. doi: 10.1002/emmm.201201846.

  50. Lundberg K., Nijenhuis S., Vossenaar E.R. et al. Citrullinated proteins have increased immunogenicity and arthritogenicity and their presence in arthritic joints correlates with disease severity. Arthritis Res Ther. 2005; 7(3): R458–R467. doi: 10.1186/ar1697.

  51. Burska A.N., Hunt L., Boissinot M. et al. Autoantibodies to posttranslational modifications in rheumatoid arthritis. Mediators Inflamm. 2014; 2014: 492873. doi: 10.1155/2014/492873.

  52. Maugeri N., Rovere-Querini P., Manfredi A.A. Disruption of a regulatory network consisting of neutrophils and platelets fosters persisting inflammation in rheumatic diseases. Front Immunol. 2016; 7: 182. doi: 10.3389/fimmu.2016.00182.

  53. Khandpur R., Carmona-Rivera C., Vivekanandan-Giri A. et al. NETs are a source of citrullinated autoantigens and stimulate inflammatory responses in rheumatoid arthritis. Sci Transl Med. 2013; 5(178): 178ra40. doi: 10.1126/scitranslmed.3005580.

  54. Peerschke E.I., Yin W., Ghebrehiwet B. Complement activation on platelets: implications for vascular inflammation and thrombosis. Mol Immunol. 2010; 47(13): 2170–75. doi: 10.1016/j.molimm.2010.05.009.

  55. Gros A., Ollivier V., Ho-Tin-Noe B. Platelets in inflammation: regulation of leukocyte activities and vascular repair. Front Immunol. 2015; 5: 678. doi: 10.3389/fimmu.2014.00678.

  56. Mauler M., Bode C., Duerschmied D. Platelet serotonin modulates immune functions. Hamostaseologie. 2016; 36(1): 11–16. doi: 10.5482/HAMO-14-11-0073.

  57. Palmer D.G., Hogg N., Revell P.A. Lymphocytes, polymorphonuclear leukocytes, macrophages and platelets in synovium involved by rheumatoid arthritis. A study with monoclonal antibodies. Pathology. 1986; 18(4): 431–37. doi: 10.3109/00313028609087564.

  58. Schmitt-Sody M., Metz P., Gottschalk O. et al. Platelet P-selectin is significantly involved in leukocyte-endothelial cell interaction in murine antigen-induced arthritis. Platelets. 2007; 18(5): 365–72. doi: 10.1080/09537100701191315.

  59. Schmitt-Sody M., Metz P., Klose A. et al. In vivo interactions of platelets and leucocytes with the endothelium in murine antigen-induced arthritis: the role of P-selectin. Scand J Rheumatol. 2007; 36(4): 311–19. doi: 10.1080/03009740701218741.

  60. Waguri-Nagaya Y., Otsuka T., Sugimura I. et al. Synovial inflammation and hyperplasia induced by gliostatin/platelet-derived endothelial cell growth factor in rabbit knees. Rheumatol Int. 2000; 20(1): 13–19. doi: 10.1007/s002960000067.

  61. Avramakis G., Papadimitraki E., Papakonstandinou D. et al. Platelets and white blood cell subpopulations among patients with myocardial infarction and unstable angina. Platelets. 2007; 18(1): 16–23. doi: 10.1080/09537100600800412.

  62. Muscari A., De Pascalis S., Cenni A. et al. Determinants of mean platelet volume (MPV) in an elderly population: relevance of body fat, blood glucose and ischaemic electrocardiographic changes. Thromb Haemost. 2008; 99(6): 1079–84. doi: 10.1160/TH07-12-0712.

  63. Colkesen Y., Acil T., Abayli B. et al. Mean platelet volume is elevated during paroxysmal atrial fibrillation: a marker of increased platelet activation? Blood Coagul Fibrinolysis. 2008; 19(5): 411–14. doi: 10.1097/MBC.0b013e3283049697.

  64. Endler G., Klimesch A., Sunder-Plassmann H. et al. Mean platelet volume is an independent risk factor for myocardial infarction but not for coronary artery disease. Br J Haematol. 2002; 117(2): 399–404. doi: 10.1046/j.1365-2141.2002.03441.x.

  65. Martin J.F., Bath P.M., Burr M.L. Influence of platelet size on outcome after myocardial infarction. Lancet. 1991; 338(8780): 1409–11. doi: 10.1016/0140-6736(91)92719-i.

  66. Bath P., Algert C., Chapman N., Neal B.; PROGRESS Collaborative Group. Association of mean platelet volume with risk of stroke among 3134 individuals with history of cerebrovascular disease. Stroke. 2004; 35(3): 622–26. doi: 10.1161/01.STR.0000116105.26237.EC.

  67. Coban E., Adanir H. Platelet activation in patients with Familial Mediterranean Fever. Platelets. 2008; 19(6): 405–08. doi: 10.1080/09537100802187121.

  68. Bhatia G.S., Sosin M.D., Patel J.V. et al. Plasma indices of endothelial and platelet activation in Rheumatoid Disease: relationship to cardiovascular co-morbidity. Int J Cardiol. 2009; 134(1): 97–103. doi: 10.1016/j.ijcard.2008.01.038.

  69. Fink P.C., Piening U., Fricke P.M., Deicher H. Platelet aggregation and aggregation inhibition by different antiglobulins and antiglobulin complexes from sera of patients with rheumatoid arthritis. Arthritis Rheum. 1979; 22(8): 896–903. doi: 10.1002/art.1780220814.

  70. Saeed S.A., Gilani A.H., Rasheed H. et al. Plasma from rheumatoid patients taking low dose methotrexate enhances platelet aggregation. Res Commun Mol Pathol Pharmacol. 2002; 111(1–4): 69–76.

  71. Knijff-Dutmer E.A., Kalsbeek-Batenburg E.M., Koerts J., van de Laar M.A. Platelet function is inhibited by non-selective non-steroidal anti-inflammatory drugs but not by cyclo-oxygenase-2-selective inhibitors in patients with rheumatoid arthritis. Rheumatology (Oxford). 2002; 41(4): 458–61. doi: 10.1093/rheumatology/41.4.458.

  72. Alcalay M., Bontoux D., Peltier A. et al. C7 deficiency, abnormal platelet aggregation, and rheumatoid arthritis. Arthritis Rheum. 1981; 24(1): 102–03. doi: 10.1002/art.1780240118.

  73. Falus A., Meretey K., Bagdy D. et al. Beta-2-microglobulin-specific autoantibodies cause platelet aggregation and interfere with ADP-induced aggregation. Clin Exp Immunol. 1982; 47(1): 103–09.

  74. Riddle J.M., Bluhm G.B., Pitchford W.C. et al. A comparative study of platelet reactivity in arthritis. Ann N Y Acad Sci. 1981; 370: 22–29. doi: 10.1111/j.1749-6632.1981.tb29717.x.

  75. Colli S., Maderna P., Tremoli E. et al. Platelet function in rheumatoid arthritis. Scand J Rheumatol. 1982; 11(3): 139–43. doi: 10.3109/03009748209098179.

  76. Al-Ghamdi A., Attar S.M. Extra-articular manifestations of rheumatoid arthritis: a hospital-based study. Ann Saudi Med. 2009; 29(3): 189–93. doi: 10.4103/0256-4947.51774.

  77. Ertenli I., Haznedaroglu I.C., Kiraz S. et al. Cytokines affecting megakaryocytopoiesis in rheumatoid arthritis with thrombocytosis. Rheumatol Int. 1996; 16(1): 5–8. doi: 10.1007/BF01419947.

  78. Ertenli I., Kiraz S., Oztürk M.A. et al. Pathologic thrombopoiesis of rheumatoid arthritis. Rheumatol Int. 2003; 23(2): 49–60. doi: 10.1007/s00296-003-0289-0.

  79. Kiraz S., Ertenli I., Ozturk M.A. et al. Bloodstream thrombopoietin in rheumatoid arthritis with thrombocytosis. Clin Rheumatol. 2002; 21(6): 453–56. doi: 10.1007/s100670200114.

  80. Hutchinson R.M., Davis P., Jayson M.I. Thrombocytosis in rheumatoid arthritis. Ann Rheum Dis. 1976; 35(2): 138–42. doi: 10.1136/ard.35.2.138.

  81. Ertenli I., Kiraz S., Arici M. et al. P-selectin as a circulating molecular marker in rheumatoid arthritis with thrombocytosis. J Rheumatol. 1998; 25(6): 1054–58.

  82. Farr M., Scott D.L., Constable T.J. et al. Thrombocytosis of active rheumatoid disease. Ann Rheum Dis. 1983; 42(5): 545–49. doi: 10.1136/ard.42.5.545.

  83. Ehrenfeld M., Penchas S., Eliakim M. Thrombocytosis in rheumatoid arthritis. Recurrent arterial thromboembolism and death. Ann Rheum Dis. 1977; 36(6): 579–81. doi: 10.1136/ard.36.6.579.

  84. Pines A., Kaplinsky N., Olchovsky D. et al. Recurrent transient ischemic attacks associated with thrombocytosis in rheumatoid arthritis. Clin Rheumatol. 1982; 1(4): 291–93. doi: 10.1007/BF02032089.

  85. Casado Naranjo I., Martin Gonzalez R., Sancho Rieger J. et al. Transient ischaemic attacks associated with thrombocytosis in active rheumatoid arthritis. J Neurol Neurosurg Psychiatry. 1988; 51(12): 1599. doi: 10.1136/jnnp.51.12.1599.

  86. Milovanovic M., Nilsson E., Jaremo P. Relationships between platelets and inflammatory markers in rheumatoid arthritis. Clin Chim Acta. 2004; 343(1–2): 237–40. doi: 10.1016/j.cccn.2003.12.030.

  87. Kacena M.A., Horowitz M.C. The role of megakaryocytes in skeletal homeostasis and rheumatoid arthritis. Curr Opin Rheumatol. 2006; 18(4): 405–10. doi: 10.1097/01.bor.0000231910.42666.31.

  88. Talukdar M., Barui G., Adhikari A. et al. A Study on association between common haematological parameters and disease activity in rheumatoid arthritis. J Clin Diagn Res. 2017; 11(1): EC01–EC04. doi: 10.7860/JCDR/2017/23524.9130.

  89. Yazici S., Yazici M., Erer B. et al. The platelet indices in patients with rheumatoid arthritis: mean platelet volume reflects disease activity. Platelets. 2010; 21(2): 122–25. doi: 10.3109/09537100903474373.

  90. Moghimi J., Ghahremanfard F., Salari M., Ghorbani R. Association between mean platelet volume and severity of rheumatoid arthritis. Pan Afr Med J. 2017; 27: 276. doi: 10.11604/pamj.2017.27.276.12228.

  91. Kisacik B., Tufan A., Kalyoncu U. et al. Mean platelet volume (MPV) as an inflammatory marker in ankylosing spondylitis and rheumatoid arthritis. Joint Bone Spine. 2008; 75(3): 291–94. doi: 10.1016/j.jbspin.2007.06.016.

  92. Gasparyan A.Y., Sandoo A., Stavropoulos-Kalinoglou A., Kitas G.D. Mean platelet volume in patients with rheumatoid arthritis: The effect of anti-TNF-α therapy. Rheumatol Int. 2010; 30(8): 1125–29. doi: 10.1007/s00296-009-1345-1.

  93. Khaled S.A.A., NasrEldin E., Makarem Y.S., Mahmoud H.F.F. Value of platelet distribution width and mean platelet volume in Disease Activity Score of rheumatoid arthritis. J Inflamm Res. 2020; 13: 595–606. doi: 10.2147/JIR.S265811.


Об авторах / Для корреспонденции


Вадим Иванович Мазуров, д.м.н., профессор, академик РАН, заслуженный деятель науки РФ, главный научный консультант, директор НИИ ревматологии ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, зав. кафедрой терапии, ревматологии, экспертизы временной нетрудоспособности и качества медицинской помощи им. Э.Э. Эйхвальда ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, руководитель центра аутоиммунных заболеваний СПб ГБУЗ «Клиническая ревматологическая больница № 25». Адрес: 191015, Г. Санкт-Петербург,
ул. Кирочная, д. 41. E-mail: maz.nwgmu@yandex.ru. ORCID: 0000-0002-0797-2051. SPIN-код: 6823-5482
Евгений Сергеевич Мельников, аспирант кафедры терапии, ревматологии, экспертизы временной нетрудоспособности и качества медицинской помощи им. Э.Э. Эйхвальда ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, врач-ревматолог СПб ГБУЗ «Клиническая ревматологическая больница № 25». Адрес: 190068, г. Санкт-Петербург, ул. Большая Подьяческая, д. 30. E-mail: melnikovzhenya@mail.ru. ORCID: 0000-0002-8521-6542
Роман Андреевич Башкинов, аспирант кафедры терапии, ревматологии, экспертизы временной нетрудоспособности и качества медицинской помощи им. Э.Э. Эйхвальда ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, врач-ревматолог СПб ГБУЗ «Клиническая ревматологическая больница № 25». Адрес: 190068, г. Санкт-Петербург, ул. Большая Подьяческая, д. 30. E-mail: bashkinov-roman@mail.ru; ORCID: 0000-0001-9344-1304. SPIN-код: 5169-5066


Похожие статьи


Бионика Медиа