Pathogenetic justification of the use of the vitamin-mineral complex calciren for the prevention and complex correction of osteoporosis


DOI: https://dx.doi.org/10.18565/therapy.2020.6.190-201

Dydykina I.S., kovalenko P.S., nurbayeva K.S., arutyunova E.V., kozhevnikova P.O.

1) V.A. Nasonova Research Institute of Rheumatology, Moscow; 2) M.V. Lomonosov Moscow State University
The review highlights the social, medical and economic significance of the problem of osteoporosis and osteoporotic fractures. The role of cellular elements in bone remodeling, the importance of organic matrix and mineral substances in ensuring the quality and strength of bone is indicated. The article presents the results of research on the importance and role of fat-soluble vitamins D and K in the body, their contribution to bone metabolism and bone mineralization.
A number of studies cited in the review show that filling the deficiency of vitamins and trace elements can positively affect the state of bone tissue in osteopenia and osteoporosis. The assumption is made that domestic vitamin-mineral complex (biologically active additive) Calciren, which is composed of vitamins D and K, minerals: calcium, magnesium, manganese, zinc, boron and copper can be successfully used in the complex treatment (or as preventive measure) if insufficient intake of calcium and/or vitamin D from their diet, elevated body’s need for calcium and vitamin D for injuries of musculoskeletal system, and as part of a comprehensive program for the prevention of osteoporosis in women during menopause and in elderly age.

Literature



  1. Hernlund E., Svedbom A., Ivergard M. et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos. 2013; 8(1–2): 136. doi: 10.1007/s11657-013-0136-1.

  2. Здоровье скелета: проблемы и пути решения. Глобальный план изменения ситуации. Доступ: http://share.iofbonehealth.org/WOD/2016/thematicreport/WOD16-report-WEB-RU.pdf (дата обращения – 01.09.2020). [Skeleton health: problems and solutions. Global plan to change the situation. Available at: http://share.iofbonehealth.org/WOD/2016/thematicreport/WOD16-report-WEB-RU.pdf (date of access – 01.09.2020) (In Russ.)].

  3. Лесняк О.М., Баранова И.А., Белова К.Ю. с соавт. Остеопороз в Российской Федерации: эпидемиология, медикосоциальные и экономические аспекты проблемы (обзор литературы). Травматология и ортопедия России. 2018; 1: 155–68. [Lesnyak O.M., Baranova I.A., Belova K.Yu. et al. Osteoporosis in the Russian Federation: epidemiology, medico-social and economic aspects of the problem (literature review). Travmatologiya i ortopediya. 2018; 1: 155–68 (In Russ.)]. doi: 10.21823/2311-2905-2018-24-1-155-168.

  4. Меньшикова Л.В., Храмцова Н.А., Ершова О.Б. Ближайшие и отдаленные исходы переломов проксимального отдела бедра у лиц пожилого возраста и их медико-социальные последствия (по данным многоцентрового исследования). Остеопороз и остеопатии. 2002; 1: 8–11. [Menshikova L.V., Khramtsova N.A., Ershova O.B. Immediate and long-term outcomes of fractures of the proximal femur in the elderly and their medical and social consequences (according to a multicenter study). Osteoporoz i osteopatii. 2002; 1: 8–11 (In Russ.)].

  5. Lesnyak O., Ershova O., Belova K. et al. Epidemiology of fracture in the Russian Federation and the development of a FRAX model. Arch Osteoporos. 2012; 7: 67–73. doi: 10.1007/s11657-012-0082-3.

  6. Смирнов А.В., Румянцев А.Ш. Строение и функции костной ткани в норме и при патологии. Сообщение II. Нефрология. 2015; 1: 8–17. [Smirnov A.V., Rumyantsev A.Sh. Bone tissue function and structure under normal and pathological condition. Message II. Nefrologiya. 2015; 1: 8–17 (In Russ.)].

  7. Дыдыкина И.С., Веткова Е.С. Склеростин и его роль в регуляции метаболизма костной ткани. Научно-практическая ревматология. 2013; 3: 296–301. [Dydykina I.S., Vetkova E.S. Sclerostin and its role in the regulation of bone metabolism. Nauchno-prakticheskaya revmatologiya. 2013; 3: 296–301 (In Russ.)].

  8. Shakeri A., Adanty C. Romosozumab (sclerostin monoclonal antibody) for the treatment of osteoporosis in postmenopausal women: A review. J Popul Ther Clin Pharmacol. 2020; 27(1): e25–e31. doi: 10.15586/jptcp.v27i1.655.

  9. Varenna M., Gatti D. [The role of RANK-ligand inhibition in the treatment of postmenopausal osteoporosis]. Reumatismo. 2010; 62: 163–71. doi: 10.4081/reumatismo.2010.163.

  10. Ferrari S., Butler P.W., Kendler. D.L. et al. Further nonvertebral fracture reduction beyond 3 years for up to 10 years of denosumab treatment. J Clin Endocrinol Metab. 2019; 104(8): 3450–61. doi: 10.1210/jc.2019-00271.

  11. Papapoulos S., Lippuner K., Roux C. The Effect of 8 or 5 years of denosumab treatment in postmenopausal women with osteoporosis: results from the FREEDOM extension study. Osteoporos Int. 2015; 26(12): 2773–83. doi: 10.1007/s00198-015-3234-7.

  12. Торопцова Н.В., Никитинская О.А., Смирнов А.В. Опыт трехлетнего применения генно-инженерного биологического препарата деносумаб для лечения женщин с постменопаузальным остеопорозом: эффективность, безопасность и приверженность лечению. Научно-практическая ревматология. 2017; 3: 261–266. [Toroptsova N.V., Nikitinskaya O.A., Smirnov A.V. Three years' experience with the biological agent denosumab used to treat women with postmenopausal osteoporosis: efficacy, safety and treatment adherence. Nauchno-prakticheskaya revmatologiya. 2017; 3: 261–266 (In Russ.)]. doi: 10.14412/1995-4484-2017-261-266.

  13. Коваленко П.С., Дыдыкина И.С., Смирнов А.В. с соавт. Опыт применения деносумаба при лечении больных ревматоидным артритом с остеопорозом. Фарматека. 2017; 7: 25–29. [Kovalenko P.S., Dydykina I.S., Smirnov A.V. et al. The experience of the use of denosumab in the treatment of patients with rheumatoid arthritis with osteoporosis. Farmateka. 2017; 7: 25–29 (In Russ.)].

  14. Добровольская О.В., Коваленко П.С., Торопцова Н.В. с соавт. Сравнительная оценка эффективности деносумаба у больных ревматоидным артритом и постменопаузальным остеопорозом: результаты 1-годичного исследования в клинической практике. Научно-практическая ревматология. 2019; 2: 160–165. [Dobrovolskaya O.V., Kovalenko P.S., Toroptsova N.V. et al. Comparative evaluation of denosumab efficacy of in patients with rheumatoid arthritis and postmenopausal osteoporosis: results of 1-year study in clinical practice. Nauchno-prakticheskaya revmatologiya. 2019; 2: 160–165 (In Russ.)]. doi: 10.14412/1995-4484-2019-160-165.

  15. Дыдыкина П.С., Дадыкина И.С., Насонов Е.Л. Влияние терапии генно-инженерными биологическими препаратами на костную ткань больных ревматоидным артритом. Научно-практическая ревматология. 2014; 6: 669–677. [Dydykina P.S., Dadykina I.S., Nasonov E.L. Impact of biological therapy on bone in patients with rheumatoid arthritis. Nauchno-prakticheskaya revmatologiya. 2014; 6: 669–677 (In Russ.)].

  16. Клинические рекомендации. Остеопороз. Диагностика, профилактика и лечение. Под ред. Л.И. Беневоленской, О.М. Лесняк. М.: ГЭОТАР-Медиа. 2009; 176 с. [Clinical guidelines. Osteoporosis. Diagnostics, prevention and treatment. Ed. by Benevolenskaya L.I., Lesnyak O.M. M.: GEOTAR-Media. 2009; 176 p. (In Russ.)].

  17. Спиричев В.Б. Витамины, витаминоподобные и минеральные вещества: справочник. М.: МЦФЭР. 2004; 240 с. [Spirichev V.B. Vitamins, vitamin-like and mineral substances: a reference book. M.: MCFER. 2004; 240 p. (In Russ.)].

  18. Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации. Методические рекомендации МР 2.3.1.2432-8. [Norms of physiological needs for energy and nutrients for various groups of the population of the Russian Federation. Methodical recommendations 2.3.1.2432-8 (In Russ.)].

  19. Dawson-Hughes B., Mithal A., Bonjour J.P. et al. IOF position statement: vitamin D recommendations for older adults. Osteoporos Int. 2010; 21(7): 1151–54. doi: 10.1007/s00198-010-1285-3.

  20. Gomez de Tejada Romero M.J., Sosa Henriquez M., Del Pino Montes J. et al. Position document on the requirements and optimum levels of vitamin D. Rev Osteoporos Metab Miner 2011; 3(1): 53–64.

  21. Дыдыкина И.С., Коваленко П.С., Коваленко А.А. Дифференцированный подход к выбору препаратов витамина D при лечении остеопороза. Фарматека. 2017; S4: 17–21. [Dydykina I.S., Kovalenko P.S., Kovalenko A.A. Differentiated approach to the selection of vitamin D preparations for the treatment of osteoporosis. Farmateka. 2017; S4: 17–21 (In Russ.)].

  22. Bischoff-Ferrari H.A., Dawson-Hughes B., Staehelin H.B. et al. Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ. 2009; 339: b3692. doi: 10.1136/bmj.b3692.

  23. Wen L., Chen J., Duan L., Li S. Vitamin K dependent proteins involved in bone and cardiovascular health (Review). Mol Med Rep. 2018; 18(1): 3–15. doi:10.3892/mmr.2018.8940.

  24. Maresz K. Proper calcium use: vitamin K2 as a promoter of bone and cardiovascular health. Integr Med (Encinitas). 2015; 14(1): 34–39.

  25. Fusaro M., Mereu M.C., Aghi A. et al. Vitamin K and bone. Clin Cases Miner Bone Metab. 2017; 14(2): 200–06. doi: 10.11138/ccmbm/2017.14.1.200.

  26. Панкратова Ю.В., Пигарова Е.А., Дзеранова Л.К. Витамин К-зависимые белки: остеокальцин, матриксный Gla-белок и их внекостные эффекты. Ожирение и метаболизм. 2013; 2: 11–18. [Pankratova Yu.V., Pigarova E.A., Dzeranova L.K. Vitamin K-dependent proteins: osteocalcin, matrix gla-protein and extra osseous effects. Ozhirenie i metabolism. 2013; 2: 11–18 (In Russ.)].

  27. Azuma K., Ouchi Y., Inoue S. Vitamin K: novel molecular mechanisms of action and its roles in osteoporosis. Geriatr Gerontol Int. 2014; 14(1): 1–7. doi:10.1111/ggi.12060.

  28. Akbari S., Rasouli-Ghahroudi A.A. Vitamin K and bone metabolism: a review of the latest evidence in preclinical studies. Biomed Res Int. 2018; 2018: 4629383. doi: 10.1155/2018/4629383.

  29. Riphagen I.J., Keyzer C.A., Drummen N.E. et al. Prevalence and effects of functional vitamin K insufficiency: The PREVEND study. Nutrients. 2017; 9(12): 1334. doi: 10.3390/nu9121334.

  30. Keyzer C.A., Vermeer C., Joosten M.M. et al. Vitamin K status and mortality after kidney transplantation: a cohort study. Am J Kidney Dis. 2015; 65(3): 474–83. doi: 10.1053/j.ajkd.2014.09.014.

  31. Cockayne S., Adamson J., Lanham-New S. et al. Vitamin K and the prevention of fractures: systematic review and meta-analysis of randomized controlled trials. Arch Intern Med. 2006; 166(12): 1256–61. doi:10.1001/archinte.166.12.1256.

  32. Nakano T., Tsugawa N., Kuwabara A. et al. High prevalence of hypovitaminosis D and K in patients with hip fracture. Asia Pac J Clin Nutr. 2011; 20(1): 56–61.

  33. Apalset E.M., Gjesdal C.G., Eide G.E., Tell G.S. Intake of vitamin K1 and K2 and risk of hip fractures: The Hordaland Health Study. Bone. 2011; 49(5): 990–95. doi: 10.1016/j.bone.2011.07.035.

  34. Hao G., Zhang B., Gu M. et al. Vitamin K intake and the risk of fractures: A meta-analysis. Medicine (Baltimore). 2017; 96(17): e6725. doi:10.1097/MD.0000000000006725.

  35. Orimo H., Nakamura T., Hosoi T. et al. Japanese 2011 guidelines for prevention and treatment of osteoporosis-executive summary. Arch Osteoporos. 2012; 7(1–2): 3–20. doi: 10.1007/s11657-012-0109-9.

  36. Binkley N., Harke J., Krueger D. et al. Vitamin K treatment reduces undercarboxylated osteocalcin but does not alter bone turnover, density, or geometry in healthy postmenopausal North American women. J Bone Miner Res. 2009; 24(6): 983–91. doi:10.1359/jbmr.081254.

  37. Mott A., Bradley T., Wright K. et al. Effect of vitamin k on bone mineral density and fractures in adults: An updated systematic review and meta-analysis of randomised controlled trials. Osteoporos Int. 2019; 30(8): 1543–59. doi: 10.1007/s00198-019-04949-0.

  38. Akhtar T., Hajra A., Bhayan P. et al. Association between direct-acting oral anticoagulants vs. warfarin with the risk of osteoporosis in patients with non-valvular atrial fibrillation. Int J Cardiol Heart Vasc. 2020; 27: 100484. doi: 10.1016/j.ijcha.2020.100484.

  39. Скальный А.В., Рудаков И.А. Биоэлементы в медицине. М.: Мир. 2004; c. 50–345. [Skalny A.V., Rudakov I.A. Bioelements in medicine. М.: Mir. 2004; pp. 50–345 (In Russ.)].

  40. Оберлис Д., Храланд Б., Скальный А. Биологическая роль макро- и микроэлементов у человека и животных. С-Пб.: Наука. 2008: c. 145–418. [Oberlis D., Khraland B., Skalny A. The biological role of macro- and microelements in humans and animals. SPb.: Nauka. 2008: pp. 145–418 (In Russ.)].

  41. Спиричев В.Б. Роль витаминов и минеральных веществ в остеогенезе и профилактике остеопатий у детей. Вопросы детской диетологии. 2003; 1: 40–49. [Spirichev V.B. The role of vitamins and minerals in osteogenesis and prevention of osteopathies in children. Voprosy detskoy dietologii. 2003; 1: 40–49 (In Russ.)].

  42. Persicov А.V., Brodsky B. Unstable molecules form stable tissues. Proc Natl Acad Sci USA. 2002; 99(3): 1101–103. doi: 10.1073/pnas.042707899.

  43. Moser-Veillon R.B. Zinc needs and homeostasis during lactation. Analyst. 1995; 120(3): 895–97. doi: 10.1039/an9952000895.

  44. Sauer G.R., Wuthier R.E. Distribution of zinc in the avian growth plate. J. Bone Miner Res. 1990; 5: 162.

  45. Hurley L.S. Teratogenic aspects of manganese, zinc, and copper nutrition. Physiol Rev. 1981; 61(2): 249–95. doi: 10.1152/physrev.1981.61.2.249.

  46. Hambidge K.M., Hambidge C., Jacobs M., Baum J.D. Low levels of zinc in hair, anorexia, poor growth, and hypogeusia in children. Pediatr Res. 1972; 6(12): 868–74. doi: 10.1203/00006450-197212000-00003.

  47. Wagner P.A., Krista M.L., Bailey L.B. et al. Zinc status of elderly black Americans from urban low-income households. Am J Clin Nutr. 1980; 33(8): 1771–77. doi: 10.1093/ajcn/33.8.1771.

  48. Freudenheim J.L., Johnson N.E., Smith E.L. Relationships between usual nutrient intake and bone-mineral content of women 35–65 years of age: longitudinal and cross-sectional analysis. Am J Clin Nutr. 1986; 44(6): 863–76. doi: 10.1093/ajcn/44.6.863.

  49. Herzberg M., Foldes J., Steinberg R., Menczel J. Zinc excretion in osteoporotic women. J Bone Miner Res. 1990; 5(3): 251–57. doi: 10.1002/jbmr.5650050308.

  50. Szathmari M., Steczek K., Szucs J., Hollo I. [Zinc excretion in osteoporotic women]. Orv Hetil. 1993; 134(17): 911–14.

  51. Relea P., Revilla M., Ripoll E. et al. Zinc, biochemical markers of nutrition, and type I osteoporosis. Age Ageing. 1995; 24(4): 303–07. doi: 10.1093/ageing/24.4.303.

  52. Lowe N.M., Fraser W.D, Jackson M.J. Is there a potential therapeutic value of copper and zinc for osteoporosis? Proc Nutr Soc. 2002; 61(2): 181–85. doi: 10.1079/PNS2002154.

  53. Steidl L., Ditmar R. Blood zinc findings in osteoporosis. Acta Univ Palacki Olomuc Fac Med. 1990; 126: 129–38.

  54. Gur A., Colpan L., Nas K. et al. The role of trace minerals in the pathogenesis of postmenopausal osteoporosis and new effect of calcitonin. J Bone Miner Metab. 2002; 20: 39–43.

  55. Hill T., Meunier N., Andriollo-Sanchez M. et al. The relationship between the zinc nutritive status and biochemical markers of bone turnover in older European adults: the ZENITH study. Eur J Clin Nutr. 2005; 59 (Suppl 2): S73–78. doi: 10.1038/sj.ejcn.1602303.

  56. Mutlu M., Argun M., Kilic E. et al. Magnesium, zinc and copper status in osteoporotic, osteopenic and normal post-menopausal women. J Int Med Res. 2007; 35(5): 692–95. doi: 10.1177/147323000703500514.

  57. Reginster J.Y., Strause L., Saltman P., Frachimont P. Trace elements and osteoporosis: a preliminary study of decreased serum manganese. Med Sci Res. 1998; 16: 337–38.

  58. Odabasi E., Turan M., Aydin A. et al. Magnesium, zinc, copper, manganese, and selenium levels in postmenopausal women with osteoporosis. Can magnesium play a key role in osteoporosis? Ann Acad Med Singapore. 2008; 37(7): 564–67.

  59. Bureau I., Anderson R.A., Arnaud J. et al. Trace mineral status in postmenopausal women: impact of hormonal replacement therapy. J Trace Elem Med Biol. 2002; 16: 9–13.

  60. Захарова И.Н., Творогова Т.М., Воробьева А.С., Кузнецова О.А. Микроэлементоз как фактор формирования остеопении у подростков. Педиатрия. 2012; 1: 68–75. [Zakharova I.N., Tvorogova T.M., Vorobieva A.S., Kuznetsova O.A. Microelementosis as a factor in the formation of osteopenia in adolescents. Pediatriya. 2012; 1: 68–75 (In Russ.)].

  61. Никитинская О.А., Торопцова Н.В., Беневоленская О.А. Фармакологическая профилактика первичного остеопороза. Российский медицинский журнал. 2008; 6: 3–8. [Nikitinskaya O.A., Toroptsova N.V., Benevolenskaya O.A. Pharmacological prevention of primary osteoporosis. Rossiysky meditsinsky zhurnal. 2008; 6: 3–8 (In Russ.)].

  62. Sakhaee K., Poindexter J.R., Griffith C.S., Pak C.Y.C. Stone forming risk of calcium citrate supplementation in healthy postmenopausal women. The Jornal of Urology 2004; 172(3): 958–61. J Urol. 2004; 172(3): 958–61. doi: 10.1097/01.ju.0000136400.14728.cd.

  63. Heller H.J., Greer L.G, Haynes S.D. et al. Pharmacokinetic and pharmacodynamic comparison of two calcium supplements in postmenopausal women. J Clin Pharmacol. 2000; 40(11): 1237–44.

  64. Recker R.R. Calcium absorption and achlorhydria. N Engl J Med. 1985; 313(2): 70–73. doi: 10.1056/NEJM198507113130202.


About the Autors


Irina S. Dydykina, PhD, leading researcher of the laboratory of antirheumatic medicaments safety monitoring
of V.A. Nasonova Scientific Research Institute of Rheumatology. Address: 115522, Moscow, 34-A Kashirskoe Highway. Tel.: +7 (903) 763-21-98. E-mail: dydykina_is@mail.ru. ORCID: 0000-0002-2985-8831
Polina S. Kovalenko, PhD, junior research assistant of the Department of metabolic diseases of bones and joints, with the Center for osteoporosis prevention (Ministry of Healthcare of Russia), V.A. Nasonova scientific research institute of rheumatology. Address: 115522, Moscow, 34-A Kashirskoe Highway. E-mail: polina_dydykina@mail.ru. ORCID: 0000-0002-6076-4374
Kamila S. Nurbaeva, clinical resident of V.A. Nasonova Scientific Research Institute of Rheumatology. Address: 115522, Moscow, 34-A Kashirskoe Highway. Tel.: +7 (925) 350-75-69. E-mail: camila9@mail.ru. ORCID: 0000-0001-6685-7670
Elizaveta V. Arutyunova, student of M.V. Lomonosov Moscow State University. Address: 119991, Moscow, 1 Leninskie gory Str. E-mail: liza.arutyunova@mail.ru. ORCID: 0000-0002-4374-2798
Polina O. Kozhevnikova, postgraduate student of V.A. Nasonova Scientific Research Institute of Rheumatology. Address: 115522, Moscow, 34-A Kashirskoe Highway. E-mail: pko31@list.ru. ORCID: 0000-0001-7360-1075


Similar Articles


Бионика Медиа