Cardiac and vessels remodeling as a result of FGF-23/Klotho factors imbalance in chronic kidney disease patients


DOI: https://dx.doi.org/10.18565/therapy.2021.6.7-17

Milovanova L.Yu., Taranova M.V., Milovanova S.Yu., Kozlov V.V., Beketov V.D., Volkov A.V., Pasechnik A.I., Moiseev S.V.

1) I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University); 2) M.V. Lomonosov Moscow State University
Abstract. The aim of the study was to assess the correlation between the levels of FGF-23, Klotho, and serum troponin I (a classic biomarker of cardiac muscle damage) and clinical signs of cardiac and vascular remodeling.
Material and methods. 130 patients with chronic kidney disease (CKD) stages 2–5D without cardiovascular disease (CVD) clinical manifestations were icluded in the study. In all participants were measured serum levels of FGF-23, Klotho and troponin I (sTr-I), also echocardiography and sphygmography were performed.
Results. FGF-23 level correlated with sTr-I (r=0,512; p <0,01), presence of eccentric left ventricular hypertrophy (LVH; r=0,545; p <0,01), LV diastolic dysfunction (r=0,448; p <0,05), indicators of subendocardial blood flow (r=-0,469; p <0,05). At the same time, there was fixed no difference in the level of FGF-23 in patients with normal and high central (aortic) arterial pressure (CAP). Klotho’s protein level correlated with concentric LVH (r=-0,463; p <0,01), LV diastolic dysfunction (r=-0,612; p <0,05), pulse wave velocity (PWV; r=-0,667; p <0,001 ), with indexes for estimation the cardiac structures calcification (ECSS; r =-0,581; p <0,01). Multivariate analysis revealed a positive independent association of FGF-23 with eccentric LVH (OR=1,056; 95% CI: 1,006–1,109; p=0,027). Protein Klotho acted as a negative determinant for concentric LVH (OR=0,988; 95% CI: 0,984–0,992; p=0,001), PWV (OR=0,984; 95% CI: 0,977–0,991; p <0,001) and ECSC (OR=0,991; 95% CI: 0,988–0,995; p <0,001). In addition, multivariate analysis showed a correlation between the Klotho protein level (OR=0,980; 95% CI: 0,964–0,996; p=0,016), FGF-23 (OR=3,145; 95% CI: 1,020–9,695; p=0,046) and sTr-I in blood serum.
Conclusion. In patients with CKD stages 2–5D without clinical CVD manifestations, an increased serum FGF-23 level and a decreased level of serum Klotho protein are associated with a high risk of cardiovascular diseases development: FGF-23 level – with eccentric LVH (regardless of CAP), Klotho protein level – with concentric LVH, increased PWV and ECSC. Moderately elevated sTr-I level may be the first manifestation of FGF-23/Klotho protein factors imbalance in CKD.

Literature



  1. Go A.S., Chertow G.M., Fan D. et al. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004; 351(13): 1296–1305. doi: 10.1056/NEJMoa041031.

  2. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease – Mineraland Bone Disorder (CKD-MBD). Kidney Int Suppl (2011). 2017; 7(1): 1–59. doi: 10.1016/j.kisu.2017.04.001.

  3. Quarles L.D. FGF-23 and α-Klotho co-dependent and independent functions. Curr Opin Nephrol Hypertens. 2019; 28(1): 16–25. doi: 10.1097/MNH.0000000000000467.

  4. Scialla J.J., Xie H., Rahman M. et al. Fibroblast Growth Factor-23 and Cardiovascular Events in CKD, the Chronic Renal Insufficiency Cohort (CRIC) Study Investigators. J Am Soc Nephrol. 2014; 25(2): 349–60. doi: 10.1681/ASN.2013050465.

  5. Milovanova L., Fomin V.V., Lysenko (Kozlovskaya) L.V. et al. Disorders in the system of mineral and bone metabolism regulators – FGF-23, Klotho and sclerostin – in chronic kidney disease: Clinical significance and possibilities for correction. Chapter in the book «Chronic Kidney Disease». INTECH. 2017. ISBN: 978-953-51-5463-1. doi: https://doi.org/10.5772/66239.

  6. Kardami E. Fibroblast growth factor 23 isoforms and cardiac hypertrophy. Cardiovasc Res. 2004; 63(3): 458–66. doi:10.1016/j.cardiores.2004.04.024.

  7. Zou D., Wu W., He Y. et al. The role of klotho in chronic kidney disease. BMC Nephrol. 2018; 19(1): 285. doi: 10.1186/s12882-018-1094-z.

  8. Lu X., Hu M.C. Klotho/FGF23 axis in chronic kidney disease and cardiovascular disease. Kidney Dis (Basel) 2017; 3(1): 15–23. doi: 10.1159/000452880.

  9. Yu L., Li M. Roles of klotho and stem cells in mediating vascular calcification (Review). Exp Ther Med. 2020; 20(6): 124. doi: 10.3892/etm.2020.9252.

  10. Neyra J.A., Hu M.C. alphaKlotho and chronic kidney disease. Vitam Horm. 2016; 101: 257–310. doi: 10.1016/bs.vh.2016.02.007.

  11. Милованова Л.Ю., Козловская Л.В., Милованова С.Ю. с соавт. Взаимосвязь фактора роста фибробластов-23 (FGF-23), sKLOTHO, тропонина-I у больных хронической болезнью почек. Международный научно-исследовательский журнал. 2016; 9–3 (S1): 65–69. [Milovanova L.Y., Milovanov Y.S., Kozlovskaya L.V. Associations of fibroblast growth factor 23, soluble Klotho, troponin I in CKD patients. Mezhdunarodnyy nauchno-issledovatel’skiy zhurnal = International Research Journal. 2016; 9–3 (S1): 65–69]. doi: https://doi.org/10.18454/IRJ.2016.51.074.

  12. Chen S., Huang H., Wu B. et al. Cardiac troponin I in non-acute coronary syndrome patients with chronic kidney disease. PLoS One. 2013; 8(12): 12–19. doi: 10.1371/journal.pone.0082752.

  13. Abbas N.A., John R.I., Webb M.C. et al. Cardiac troponins and renal function in nondialysis patients with chronic kidney disease. Clin Chem. 2005; 51(11): 2059–66. doi: 10.1373/clinchem.2005.055665.

  14. Cheng H.-M., Chuang S.-Y., Wang T.-D. et al. Central blood pressure for the management of hypertension: Is it a practical clinical tool in current practice? J Clin Hypertens (Greenwich). 2020; 22(3): 391–406. doi: 10.1111/jch.13758.

  15. Williams B., Mancia G., Spiering W. el al. 2018 ESC/ESH Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018; 39(33): 3021–104. doi: 10.1093/eurheartj/ehy339.

  16. Ермоленко В.М., Волгина Г.В., Добронравов В.А. с соавт. Национальные рекомендации по минеральным и костным нарушениям при хронической болезни почек. Российское диализное общество (май 2010 г.). Нефрология и диализ. 2011; 1: 33–51. [Ermolenko V.M., Volgina G.V., Dobronravov V.A. et al. National recommendations on mineral and bone disorders in chronic kidney disease. Russian Dialysis Society (May 2010). Nephrologiya i dializ = Nephrology and Dialysis. 2011; 1: 33–51 (In Russ.)].

  17. Милягин В.А., Комиссаров В.Б. Современные методы определения жесткости сосудов. Артериальная гипертензия. 2010; 2: 134–43. [Milyagin V.A., Komissarov V.B. Modern methods of evaluation of vascular stiffness. Arterial’naya gipertenziya = Arterial hypertension. 2010; 2: 134–43 (In Russ.)].

  18. Townsend R.R., Wilkinson I.B., Schiffrin E.L. et al. Recommendations for improving and standardizing vascular research on arterial stiffness: A Scientific Statement From the American Heart Association. Hypertension. 2015; 66(3): 698–722. doi: 10.1161/HYP.0000000000000033.

  19. Васюк Ю.А., Иванова С.В., Школьник Е.Л. с соавт. Согласованное мнение российских экспертов по оценке артериальной жесткости в клинической практике. Кардиоваскулярная терапия и профилактика. 2016; 2: 4–19. [Vasyuk Yu.A., Ivanova S.V., Shkolnik E.L. et al. Consensus of Russian experts on the evaluation of arterial stiffness in clinical practice. Kardiovaskulyarnaya terapiya i profilaktika = Cardiovascular Therapy and Prevention. 2016; 15(2): 4–19 (In Russ.)]. doi: http://dx.doi.org/10.15829/1728-8800-2016-2-4-19.

  20. Smith K., de Filippi C., Isakov T. et al. Fibroblast growth factor 23, high-sensitivity cardiac troponin, and left ventricular hypertrophy in CKD. Am J Kidney Dis. 2013; 61(1): 67–73. doi: 10.1053/j.ajkd.2012.06.022.

  21. Faul C., Amaral A.P., Oskouei B. et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011; 121(11): 4393–408. doi: 10.1172/JCI46122.

  22. Niizuma S., Iwanaga Y., Yahata T., Miyazaki S. Renocardiovascular biomarkers: from the perspective of managing chronic kidney disease and cardiovascular disease. Front Cardiovasc Med. 2017; 4: 10. doi: 10.3389/fcvm.2017.00010.

  23. Scialla J.J., Lau W.L., Reilly M.P. et al. Fibroblast growth factor 23 is not associated with and does not induce arterial calcification. Kidney Int. 2013; 83(6): 1159–68. doi: 10.1038/ki.2013.3.

  24. Marthi A., Donovan K., Haynes R. et al. Fibroblast growth factor-23 and risks of cardiovascular and noncardiovascular diseases: A meta-analysis. J Am Soc Nephrol. 2018; 29(7): 2015–27. doi: 10.1681/ASN.2017121334.

  25. Sze J., Mooney J., Barzi F. Cardiac troponin and its relationship to cardiovascular outcomes in community populations – a systematic review and meta-analysis. Heart Lung Circ. 2016; 25(3): 217–28. doi: 10.1016/j.hlc.2015.09.001.

  26. Jacobs L.H., van de Kerkhof J., Mingels A.M. et al. Haemodialysis patients longitudinally assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and cardiac troponin I assays. Ann Clin Biochem. 2009; 46(Pt 4): 283–90. doi: 10.1258/acb.2009.008197.

  27. Stacy S.R., Suarez-Cuervo C., Berger Z. et al. Role of troponin in patients with chronic kidney disease and suspected acute coronary syndrome: a systematic review. Ann Intern Med. 2014; 161(7): 502–12. doi: 10.7326/M14-0746.

  28. Bansal N., Hyre Anderson A., Yang W. et al. High-sensitivity troponin T and N-terminal pro-B-type natriuretic peptide (NT-proBNP) and risk of incident heart failure in patients with CKD: the chronic renal insufficiency cohort (CRIC) study. J Am Soc Nephrol. 2015; 26(4): 946–56. doi: 10.1681/ASN.2014010108.

  29. Neyra J.A., Hu M.C. Potential application of klotho in human chronic kidney disease. Bone. 2017; 100: 41–49. doi: 10.1016/j.bone.2017.01.017.

  30. Xie J., Cha S.K., An S.W. et al. Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nat Commun. 2012; 3: 1238. doi: 10.1038/ncomms2240

  31. Liu Q., Zhu L.J., Waaga-Gasser A.M., Ding Y. et al. The axis of local cardiac endogenous Klotho-TGF-в1-Wnt signaling mediates cardiac fibrosis in human. J Mol Cell Cardiol. 2019; 136: 113–24. doi: 10.1016/j.yjmcc.2019.09.004.

  32. Seifert M.E., De Las Fuentes L., Ginsberg C. et al. Left ventricular mass progression despite stable blood pressure and kidney function in stage 3 chronic kidney disease. Am. J. Nephrol. 2014; 39(5): 392–99. doi: 10.1159/000362251.

  33. Memmos E., Sarafidis P., Pateinakis P. et al. Soluble Klotho is associated with mortality and cardiovascular events in hemodialysis. BMC Nephrol. 2019; 20(1): 217. doi: 10.1186/s12882-019-1391-1.

  34. Kim H.J., Kang E., Oh Y.K. et al. The association between soluble klotho and cardiovascular parameters in chronic kidney disease: Results from the KNOW-CKD study. BMC Nephrol. 2018; 19(1): 51. doi: 10.1186/s12882-018-0851-3.


About the Autors


Lyudmila Yu. Milovanova, MD, professor of the Department of internal, occupational diseases and rheumatology, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University). Address: 119435, Moscow, 11/5 Rossolimo Str. Tel.: +7 (916) 164-14-00. E-mail: Ludm.milovanova@gmail.com. ORCID: 0000-0002-5599-0350
Marina V. Taranova, PhD, associate professor of the Department of internal, occupational diseases and rheumatology, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University). Address: 119435, Moscow, 11/5 Rossolimo Str. E-mail: mvtaranova@mail.ru. ORCID: 0000-0002-7363-6195
Svetlana Yu. Milovanova, MD, professor of the Department of internal, occupational diseases and rheumatology, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University). Address: 119435, Moscow, 11/5 Rossolimo Str. E-mail: sveta@milovanova.ru. ORCID: 0000-0002-2687-6161
Vasily V. Kozlov, PhD, associate professor of the Department of public health and health organization named after N.A. Semashko, Federal State Autonomous Educational Institution of I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University). Address: 119992, Moscow, 2/2 Bolshaya Pirogovskaya Str. E-mail: kvv.doc@gmail.com. ORCID: 0000-0002-2389-3820
Vladimir D. Beketov, PhD, associate professor of the Department of internal, occupational diseases and rheumatology, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University). Address: 119435, Moscow, 11/5 Rossolimo Str. E-mail: beketov-vladimir@inbox.ru. ORCID: 0000-0002-6377-0630
Aleksey V. Volkov, PhD, associate professor of the Department of internal, occupational diseases and rheumatology, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University). Address: 119435, Moscow, 11/5 Rossolimo Str. E-mail: a-1973@yandex.ru. ORCID: 0000-0002-1873-0189
Anastasia I. Pasechnik, resident of the Department of internal diseases, faculty of fundamental medicine, M.V. Lomonosov Moscow State University. Address: 119991, Moscow, 27/1 Lomonosovsky Avenue. E-mail: apgull@gmail.com. ORCID: 0000-0002-7544-3696
Sergey V. Moiseev, MD, professor, head of the Department of internal, occupational diseases and rheumatology, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of Russia (Sechenov University). Address: 119435, Moscow, 11/5 Rossolimo Str. E-mail: avt420034@gmail.com. ORCID: 0000-0002-7232-4640


Similar Articles


Бионика Медиа