The role of ketonemia induced by sodium-glucose cotransporter 2 inhibitors: from the energy exchange to cardioprotection


DOI: https://dx.doi.org/10.18565/therapy.2021.10.94-109

Salukhov V.V., Khalimov Yu.Sh., Cherkashin D.V., Kadin D.V.

S.M. Kirov Military Medical Academy of the Ministry of Defense of Russia, Saint Petersburg
Abstract. Ketonemia is one of the factors presumably responsible for improving cardiovascular outcomes in studies of SGLT2 inhibitors. The purpose of this review is to compare traditional and modern ideas about the features of normal myocardial energy metabolism and pathology, the possibilities of metabolic support of failing heart, the physiology of ketogenesis, the role of ketone bodies in the body and the effect of ketones on various pathological processes. The role of substrate shifts of oxidative phosphorylation in the heart failure development is analyzed. The mechanisms of action of existing drugs to optimize the metabolism of damaged myocardium are discussed. The main stages of ketone bodies metabolism are presented, with their effect on energy metabolism and the functional state of a healthy and failing heart being highlighted. Recent advances in the study of the regulatory functions of ketones at the systemic and cellular levels are disclosed, taking into account possible receptor, epigenetic and other «noncanonical» effects. A brief description of the role of ketone bodies in brain metabolism is given, with contemporary opinions concerning the mechanisms of ketone-mediated neuroprotection to be discussed. Actual data about the mechanisms of influence of SGLT2 inhibitors on the course of cardiovascular diseases and the characteristics of the drug-induced ketonemia are presented.

Literature



  1. Zinman B., Wanner C., Lachin J.M. et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373(22): 2117–28. doi: 10.1056/NEJMoa1504720.

  2. Салухов В.В., Демидова Т.Ю. Эмпаглифлозин как новая стратегия управления исходами у пациентов с сахарным диабетом 2 типа и высоким кардиоваскулярным риском. Сахарный диабет. 2016; 6: 494–510. [Salukhov V.V., Demidova T.Y. Empagliflozin as a new management strategy on outcomes in patients with type 2 diabetes mellitus. Sakharnyy diabet = Diabetes. 2016; 6: 494–510 (In Russ.)]. https://dx.doi.org/10.14341/DM8216.

  3. Stanley W.C., Recchia F.A., Lopaschuk G.D. Myocardial substrate metabolism in the normal and failing heart. Physiol Rev. 2005; 85(3): 1093–129. doi: 10.1152/physrev.00006.2004.

  4. Scarpulla R.C. Nuclear control of respiratory chain expression by nuclear respiratory factors and PGC-1-related coactivator. Ann N Y Acad Sci. 2008; 1147: 321–34. doi: 10.1196/annals.1427.006.

  5. Kerner J., Hoppel C. Fatty acid import into mitochondria. Biochim Biophys Acta. 2000; 1486(1): 1–17. doi: 10.1016/s1388-1981(00)00044-5.

  6. Hue L., Beauloye C., Bertrand L. et al. New targets of AMP-activated protein kinase. Biochem Soc Trans. 2003; 31(Pt 1): 213–15. doi: 10.1042/bst0310213.

  7. Kusuoka H., Marban E. Mechanism of the diastolic dysfunction induced by glycolytic inhibition. Does adenosine triphosphate derived from glycolysis play a favored role in cellular Ca2+ homeostasis in ferret myocardium? J Clin Invest. 1994; 93(3): 1216–23. doi: 10.1172/JCI117075.

  8. Mjos O.D. Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs. J Clin Invest. 1971; 50(7): 1386–89. doi: 10.1172/JCI106621.

  9. Korvald C., Elvenes O.P., Myrmel T. Myocardial substrate metabolism influences left ventricular energetics in vivo. Am J Physiol Heart Circ Physiol. 2000; 278(4): H1345–51. doi: 10.1152/ajpheart.2000.278.4.H1345.

  10. Мохова Е.Н., Старков А.А., Бобылева В.А. Разобщение окислительного фосфорилирования жирными кислотами в митохондриях печени и мышц. Биохимия. 1993; 10: 1513–1522. [Mokhova E.N., Starkov A.A., Bobyleva V.A. Oxidative phosphorylation uncoupling by fatty acids in liver and muscle mitochondria. Biokhimiya = Biochemistry. 1993; 58(10): 1513–1522. (In Russ.)].

  11. Neubauer S., Horn M., Cramer M. et al. Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation. 1997; 96(7): 2190–96. doi: 10.1161/01.cir.96.7.2190.

  12. Casademont J., Miro O. Electron transport chain defects in heart failure. Heart Fail Rev. 2002; 7(2): 131–39. doi: 10.1023/a:1015372407647.

  13. Sack M.N., Rader T.A., Park S. et al. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation. 1996; 94(11): 2837–42. doi: 10.1161/01.cir.94.11.2837.

  14. Taegtmeyer H., Sen S., Vela D. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann N Y Acad Sci. 2010; 1188: 191–98. doi: 10.1111/j.1749-6632.2009.05100.x.

  15. Heggermont W.A., Papageorgiou A.-P., Heymans S., van Bilsen M. Metabolic support for the heart: Complementary therapy for heart failure? Eur J Heart Fail. 2016; 18(12): 1420–29. doi: 10.1002/ejhf.678.

  16. Wang X., Song C., Zhou X. et al. Mitochondria associated microRNA expression profiling of heart failure. BioMed Res Int. 2017; 2017: 4042509. doi: 10.1155/2017/4042509.

  17. Bertero T., Rezzonico R., Pottier N., Mari B. Impact of microRNAs in the cellular response to hypoxia. Int Rev Cell Mol Biol. 2017; 333: 91–158. doi: 10.1016/bs.ircmb.2017.03.006.

  18. Lopaschuk G.D. Metabolic modulators in heart disease: Past, present, and future. Can J Cardiol. 2017; 33(7): 838–49. doi: 10.1016/j.cjca.2016.12.013.Zhabyeyev P., Gandhi M., Mori J. et al. Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc Res. 2013; 97(4): 676–85. doi: 10.1093/cvr/cvs424.

  19. Zhabyeyev P., Gandhi M., Mori J. et al. Pressure-overload-induced heart failure induces a selective reduction in glucose oxidation at physiological afterload. Cardiovasc Res. 2013; 97(4): 676–85. doi: 10.1093/cvr/cvs424.

  20. Nelson D.L., Cox M. Lehninger principles of biochemistry: International edition. New York: WH Freeman. 2017; 1328 pp. ISBN-13: 978-1-4641-2611-6; ISBN: 1-4641-2611-9.

  21. Масловская А.А. Механизм развития кетоза при сахарном диабете и голодании. Журнал Гродненского государственного медицинского университета. 2012; 3: 8–10. [Maslovskaya A.A. Mechanism of ketosis in diabetes mellitus and starvation. Zhurnal Grodnenskogo gosudarstvennogo meditsinskogo universiteta = Journal of the Grodno State Medical University. 2012; 3: 8–10 (In Russ.)].

  22. Cotter D.G., Schugar R.C., Wentz A.E. et al. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation. Am J Physiol Endocrinol Metab. 2013; 304(4): E363–74. doi: 10.1152/ajpendo.00547.2012.

  23. Puchalska P., Crawford P.A. Multi-dimensional roles of ketone bodies in fuel metabolism, signaling, and therapeutics. Cell Metab. 2017; 25(2): 262–84. doi: 10.1016/j.cmet.2016.12.022.

  24. Veech R.L. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot Essent Fatty Acids. 2004; 70(3): 309–19. doi: 10.1016/j.plefa.2003.09.007.

  25. Stanley W.C., Meadows S.R., Kivilo K.M. et al. Beta-hydroxybutyrate inhibits myocardial fatty acid oxidation in vivo independent of changes in malonyl-CoA content. Am J Physiol Heart Circ Physiol. 2003; 285(4): H1626–31. doi: 10.1152/ajpheart.00332.2003.

  26. Aubert G., Martin O.J., Horton J.L. et al. The failing heart relies on ketone bodies as a fuel. Circulation. 2016; 133(8): 698–705. doi: 10.1161/CIRCULATIONAHA.115.017355.

  27. Lommi J., Kupari M., Yki-Järvinen H. Free fatty acid kinetics and oxidation in congestive heart failure. Am J Cardiol. 1998; 81(1): 45–50. doi: 10.1016/s0002-9149(97)00804-7.

  28. Zordoky B.N., Sung M.M., Ezekowitz J. et al. Metabolomic fingerprint of heart failure with preserved ejection fraction. PloS One. 2015; 10(5): e0124844. doi: 10.1371/journal.pone.0124844.

  29. Bedi K.C., Snyder N.W., Brandimarto J. et al. Evidence for intramyocardial disruption of lipid metabolism and increased myocardial ketone utilization in advanced human heart failure. Circulation. 2016; 133(8): 706–16. doi: 10.1161/CIRCULATIONAHA.115.017545.

  30. Horton J.L., Davidson M.T., Kurishima C. et al. The failing heart utilizes 3-hydroxybutyrate as a metabolic stress defense. JCI Insight. 2019; 4(4): e124079. doi: 10.1172/jci.insight.124079.

  31. Gormsen L.C., Svart M., Thomsen H.H. et al. Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: A positron emission tomography study. J Am Heart Assoc. 2017; 6(3): e005066. doi: 10.1161/JAHA.116.005066.

  32. Tunaru S., Kero J., Schaub A. et al. PUMA-G and HM74 are receptors for nicotinic acid and mediate its anti-lipolytic effect. Nat Med. 2003;9(3):352-355. doi:10.1038/nm824

  33. Graff E.C., Fang H., Wanders D., Judd R.L. Anti-inflammatory effects of the hydroxycarboxylic acid receptor 2. Metabolism. 2016; 65(2): 102–13. doi: 10.1016/j.metabol.2015.10.001.

  34. Newman J.C., Verdin E. β-hydroxybutyrate: A signaling metabolite. Annu Rev Nutr. 2017; 37(1): 51–76. doi: 10.1146/annurev-nutr-071816-064916.

  35. Jeong M.Y., Lin Y.H., Wennersten S.A. et al. Histone deacetylase activity governs diastolic dysfunction through a nongenomic mechanism. Sci Transl Med. 2018; 10(427): eaao0144. doi: 10.1126/scitranslmed.aao0144.

  36. Goldberg E.L., Shchukina I., Asher J.L. et al. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat Metab. 2020; 2(1): 50–61. doi: 10.1038/s42255-019-0160-6.

  37. Maalouf M., Rho J.M., Mattson M.P. The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev. 2009; 59(2): 293–315. doi: 10.1016/j.brainresrev.2008.09.002.

  38. Cahill G.F. Fuel metabolism in starvation. Annu Rev Nutr. 2006; 26: 1–22. doi: 10.1146/annurev.nutr.26.061505.111258.

  39. Minlebaev M., Khazipov R. Antiepileptic effects of endogenous beta-hydroxybutyrate in suckling infant rats. Epilepsy Res. 2011; 95(1–2): 100–09. doi: 10.1016/j.eplepsyres.2011.03.003.

  40. Fedorovich S.V., Voronina P.P., Waseem T.V. Ketogenic diet versus ketoacidosis: what determines the influence of ketone bodies on neurons? Neural Regen Res. 2018; 13(12): 2060–63. doi: 10.4103/1673-5374.241442.

  41. Simeone T.A., Matthews S.A., Samson K.K., Simeone K.A. Regulation of brain PPARgamma2 contributes to ketogenic diet anti-seizure efficacy. Exp Neurol. 2017; 287(Pt 1): 54–64. doi: 10.1016/j.expneurol.2016.08.006.

  42. Wu Y., Gong Y., Luan Y. et al. BHBA treatment improves cognitive function by targeting pleiotropic mechanisms in transgenic mouse model of Alzheimer’s disease. FASEB J Off Publ Fed Am Soc Exp Biol. 2020; 34(1): 1412–29. doi: 10.1096/fj.201901984R.

  43. Fan Q., Niu Z., Ma L. Meta-analysis of trimetazidine treatment for cardiomyopathy. Biosci Rep. 2018; 38(3): BSR20171583. doi: 10.1042/BSR20171583.

  44. MacInnes A., Fairman D.A., Binding P. et al. The antianginal agent trimetazidine does not exert its functional benefit via inhibition of mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. 2003; 93(3): e26–32. doi: 10.1161/01.RES.0000086943.72932.71.

  45. Vickers A.E.M. Characterization of hepatic mitochondrial injury induced by fatty acid oxidation inhibitors. Toxicol Pathol. 2009; 37(1): 78–88. doi: 10.1177/0192623308329285.

  46. Салухов В.В., Котова М.Е. Основные эффекты, вызываемые ингибиторами SGLT2 у больных сахарным диабетом типа 2, и механизмы, которые их определяют. Эндокринология: новости, мнения, обучение. 2019; 3: 61–74. [Salukhov V. V., Kotova M.E. Main effects caused by SGLT2 inhibitors in patients with type 2 diabetes and the mechanisms that determine them. Endokrinologiya: novosti, mneniya, obucheniye = Endocrinology: News, Opinions, Training. 2019; 3: 61–74 (In Russ.)]. https://dx.doi.org/10.24411/2304-9529-2019-13007.

  47. Abdelmalak M., Lew A., Ramezani R. et al. Long-term safety of dichloroacetate in congenital lactic acidosis. Mol Genet Metab. 2013; 109(2): 139–43. doi: 10.1016/j.ymgme.2013.03.019.

  48. Шестакова М.В., Бойцов С.А., Драпкина О.М. с соавт. Резолюция промежуточного совещания экспертного совета по результатам исследования Empa-Reg Outcome. Рациональная фармакотерапия в кардиологии. 2016; 2: 186–190. [Shestakova M.V., Boytsov S.A., Drapkina O.M. et al. The interim Experts’ council resolution on the EMPA-REG outcome trial issues. Ratsional’naya farmakoterapiya v kardiologii = Rational Pharmacotherapy in Cardiology. 2016; 2: 186–190 (In Russ.)]. https://dx.doi.org/10.20996/1819-6446-2016-12-2-186-190.

  49. Салухов В.В., Халимов Ю.Ш., Шустов С.Б., Кадин Д.В. Снижение кардиоваскулярного риска у пациентов с сахарным диабетом 2 типа: обзор основных стратегий и клинических исследований. Сахарный диабет. 2018; 3: 193–205. [Salukhov V.V., Khalimov Yu.Sh., Shustov S.B., Kadin D.V. Decrease of cardiovascular risk in patients with type 2 diabetes: review of the common strategies and clinical studies. Sakharnyy diabet = Diabetes. 2018; 3: 193–205 (In Russ.)]. https://dx.doi.org/10.14341/DM9570.

  50. Ferrannini E., Muscelli E., Frascerra S. et al. Metabolic response to sodium-glucose cotransporter 2 inhibition in type 2 diabetic patients. J Clin Invest. 2014; 124(2): 499–508. doi: 10.1172/JCI72227.

  51. Ferrannini E., Mark M., Mayoux E. CV protection in the EMPA-REG OUTCOME trial: A «thrifty substrate» hypothesis. Diabetes Care. 2016; 39(7): 1108–14. doi: 10.2337/dc16-0330.

  52. Салухов В.В., Котова М.Е., Максим О.В. с соавт. Влияние ингибитора натрий-глюкозного котранспортера эмпаглифлозина на некоторые клинико-лабораторные показатели сердечно- сосудистой системы у пациентов с сахарным диабетом 2 типа и высоким сердечно-сосудистым риском. Medline.ru. Российский биомедицинский журнал. 2018; 4: 636–662. [Kotova M.E., Maxim O.V., Salukhov V.V. et al. Effect of the sodium-glucose cotransporter-2 inhibitor empagliflosin on certain clinical-laboratory parameters of the cardiovascular system in patients with type 2 diabetes mellitus and high cardiovascular risk. Medline.ru. Rossiyskiy biomeditsinskiy zhurnal = Medline.ru. Russian Biomedical Journal. 2018; 4: 636–662 (In Russ.)].

  53. Ferrannini E., Baldi S., Frascerra S. et al. Shift to fatty substrate utilization in response to sodium-glucose cotransporter 2 inhibition in subjects without diabetes and patients with type 2 diabetes. Diabetes. 2016; 65(5): 1190–95. doi: 10.2337/db15-1356.

  54. Ferrannini E., Baldi S., Frascerra S. et al. Renal handling of ketones in response to sodium-glucose cotransporter 2 inhibition in patients with type 2 diabetes. Diabetes Care. 2017; 40(6): 771–76. doi: 10.2337/dc16-2724.

  55. Шаронова Л.А., Вербовой А.Ф. Место глифлозинов в управлении сахарным диабетом 2 типа. Фарматека. 2019; 4: 105–110. [Sharonova L.A., Verbovoy A.F. The place of glyflozins in the management of type 2 diabetes mellitus. Farmateka. 2019; 4: 105–110 (In Russ.)]. https://dx.doi.org/10.18565/pharmateca.2019.4.105-110.

  56. Byrne N.J., Matsumura N., Maayah Z.H. et al. Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure. Circ Heart Fail. 2020; 13(1): e006277. doi: 10.1161/CIRCHEARTFAILURE.119.006277.

  57. Abdurrachim D., Manders E., Nicolay K. et al. Single dose of empagliflozin increases in vivo cardiac energy status in diabetic db/db mice. Cardiovasc Res. 2018; 114(14): 1843–44. doi: 10.1093/cvr/cvy246.

  58. Kanikarla-Marie P., Jain S.K. Hyperketonemia (acetoacetate) upregulates NADPH oxidase 4 and elevates oxidative stress, ICAM-1, and monocyte adhesivity in endothelial cells. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2015; 35(1): 364–73. doi: 10.1159/000369702.

  59. Al Jobori H., Daniele G., Adams J. et al. Determinants of the increase in ketone concentration during SGLT2 inhibition in NGT, IFG and T2DM patients. Diabetes Obes Metab. 2017; 19(6): 809–13. doi: 10.1111/dom.12881.

  60. Nishimura R., Tanaka Y., Koiwai K. et al. Effect of empagliflozin on free fatty acids and ketone bodies in Japanese patients with type 2 diabetes mellitus: A randomized controlled trial. Adv Ther. 2019; 36(10): 2769–82. doi: 10.1007/s12325-019-01045-x.

  61. Weyer C., Vozarova B., Ravussin E., Tataranni P.A. Changes in energy metabolism in response to 48 h of overfeeding and fasting in Caucasians and Pima Indians. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2001; 25(5): 593–600. doi: 10.1038/sj.ijo.0801610.

  62. Reinhardt M., Thearle M.S., Ibrahim M. et al. A human thrifty phenotype associated with less weight loss during caloric restriction. Diabetes. 2015; 64(8): 2859–67. doi: 10.2337/db14-1881.

  63. Piaggi P., Vinales K.L., Basolo A. et al. Energy expenditure in the etiology of human obesity: spendthrift and thrifty metabolic phenotypes and energy-sensing mechanisms. J Endocrinol Invest. 2018; 41(1): 83–89. doi: 10.1007/s40618-017-0732-9.

  64. Chakravarthy M.V., Booth F.W. Eating, exercise, and «thrifty» genotypes: connecting the dots toward an evolutionary understanding of modern chronic diseases. J Appl Physiol. 2004; 96(1): 3–10. doi: 10.1152/japplphysiol.00757.2003.

  65. Kratzer J.T., Lanaspa M.A., Murphy M.N. et al. Evolutionary history and metabolic insights of ancient mammalian uricases. Proc Natl Acad Sci USA. 2014; 111(10): 3763–68. doi: 10.1073/pnas.1320393111.

  66. Freese J., Klement R.J., Ruiz-Nunez B. et al. The sedentary (r)evolution: Have we lost our metabolic flexibility? F1000Research. 2017; 6: 1787. doi: 10.12688/f1000research.12724.2.

  67. de Cabo R., Mattson M.P. Effects of intermittent fasting on health, aging, and disease. N Engl J Med. 2019; 381(26): 2541–51. doi: 10.1056/NEJMra1905136.


About the Autors


Vladimir V. Salukhov, MD, associate professor, head of the 1st Department and clinic (advanced therapy for doctors) named after academician N.S. Molchanov, S.M. Kirov Military Medical Academy of the Ministry of Defense of Russia. Address: 194044, Saint Petersburg, 6Zh Akademika Lebedeva Str. Tel.: +7 (921) 658-72-56. E-mail: vlasaluk@yandex.ru. ORCID: 0000-0003-1851-0941. eLibrary SPIN: 4531-6011
Yuri Sh. Halimov, MD, professor, head of the Department and clinic of military field therapy, S.M. Kirov Military Medical Academy of the Ministry of Defense of Russia. Address: 194044, Saint Petersburg, 17 Botkinskaya Str. E-mail: yushkha@gmail.com. ORCID: 0000-0002-7755-7275. eLibrary SPIN: 7315-6746
Dmitry V. Cherkashin, MD, professor, head of the Department and clinic of naval therapy, S.M. Kirov Military Medical Academy of the Ministry of Defense of Russia. Address: 198013, Saint Petersburg, 47 Zagorodny Avenue. E-mail: dm-cherk@yandex.ru. ORCID: 0000-0003-1363-6860. eLibrary SPIN: 621-881
Dmitry V. Kadin, PhD, senior lecturer of of the 1st Department and clinic (advanced therapy for doctors) named after academician N.S. Molchanov, S.M. Kirov Military Medical Academy of the Ministry of Defense of Russia. Address: 194044, Saint Petersburg, 6Zh Akademika Lebedeva Str. E-mail: dkadin@yandex.ru. ORCID: 0000-0003-1228-1914. eLibrary SPIN: 9703-5576


Similar Articles


Бионика Медиа