DOI: https://dx.doi.org/10.18565/therapy.2022.8.62-72
Demidova T.Yu., Izmailova M.Ya.
N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, Moscow
1. Yan M.-T., Chao C.-T., Lin S.-H. Chronic kidney disease: Strategies to retard progression. Int J Mol Sci. 2021; 22(18): 10084.https://dx.doi.org/10.3390/ijms221810084. 2. Lin Y.-C., Chang Y.H., Yang S.Y. et al. Update of pathophysiology and management of diabetic kidney disease. J Formos Med Assoc. 2018; 117(8): 662–75. https://dx.doi.org/10.1016/j.jfma.2018.02.007. 3. Martinez-Castelao A., Navarro-Gonzalez J.F., Gorriz J.L., de Alvaro F. The concept and the epidemiology of diabetic nephropathy have changed in recent years. J Clin Med. 2015; 4(6): 1207–16. https://dx.doi.org/10.3390/jcm4061207. 4. Kalra S. The KDIGO guidelines on diabetes and chronic kidney disease, 2020: An appraisal. Diabet Med. 2021; 38(7): e14561.https://dx.doi.org/10.1111/dme.14561. 5. Sui Z., Wang J., Cabrera C. et al. Aetiology of chronic kidney disease and risk factors for disease progression in Chinese subjects: A single-centre retrospective study in Beijing. Nephrology (Carlton). 2020; 25(9): 714–22. https://dx.doi.org/10.1111/nep.13714. 6. Шамхалова М.Ш., Викулова О.К., Железнякова А.В. с соавт. Эпидемиология хронической болезни почек в Российской Федерации по данным Федерального регистра взрослых пациентов с сахарным диабетом (2013–2016 гг.). Сахарный диабет. 2018; 21(3): 160–69. [Shamkhalova M.S., Vikulova O.K., Zheleznyakova A.V. et al. Trends in the epidemiology of chronic kidney disease in Russian Federation according to the Federal Diabetes Register (2013–2016). Sakharniy diabet = Diabetes Mellitus. 2018; 21(3): 160–69 (In Russ.)]. https://dx.doi.org/10.14341/DM9392. EDN: XYEBFB. 7. Afkarian M., Sachs M.C., Kestenbaum B. et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013; 24(2): 302–8. https://dx.doi.org/10.1681/ASN.2012070718. 8. Thomas M.C., Brownlee M., Susztak K. et al. Diabetic kidney disease. Nat Rev Dis Primers. 2015; 1: 15018.https://dx.doi.org/10.1038/nrdp.2015.18. 9. Anders H.J., Huber T.B., Isermann B., Schiffer M. CKD in diabetes: diabetic kidney disease versus nondiabetic kidney disease. Nat Rev Nephrol. 2018; 14(6): 361–77. https://dx.doi.org/10.1038/s41581-018-0001-y. 10. Brenner B.M., Hostetter T., Humes H.D. Molecular basis of proteinuria of glomerular origin. N Engl J Med. 1978; 298(15): 826–33. https://dx.doi.org/10.1056/NEJM197804132981507. 11. Montinaro V., Cicardi M. ACE inhibitor-mediated angioedema. Int Immunopharmacol. 2020; 78: 106081.https://dx.doi.org/10.1016/j.intimp.2019.106081. 12. Ames M.K., Atkins C.E., Pitt B. The renin-angiotensin-aldosterone system and its suppression. J Vet Intern Med. 2019; 33(2): 363–82. https://dx.doi.org/10.1111/jvim.15454. 13. Ko G.-J., Rhee C.M., Kalantar-Zadeh K. et al. The effects of high-protein diets on kidney health and longevity. JASN. 2020, 31(8): 1667–79. https://dx.doi.org/10.1681/ASN.2020010028. 14. Lim A.Kh Diabetic nephropathy – complications and treatment. Int J Nephrol Renovasc Dis. 2014; 7: 361–81.https://dx.doi.org/10.2147/IJNRD.S40172. 15. Fiorina P., Vergani A., Bassi R. et al. Role of podocyte B7-1 in diabetic nephropathy. J Am Soc Nephrol. 2014; 25(7): 1415–29.https://dx.doi.org/10.1681/ASN.2013050518. 16. Mudaliar H., Pollock C., Komala M.G. et al. The role of Toll-like receptor proteins (TLR) 2 and 4 in mediating inflammation in proximal tubules. Am J Physiol Renal Physiol. 2013; 305(2): F143–F154. https://dx.doi.org/10.1152/ajprenal.00398.2012. 17. Vallon V., Komers R. Pathophysiology of the diabetic kidney. Compr Physiol. 2011; 1(3): 1175–232.https://dx.doi.org/10.1002/cphy.c100049. 18. Chaudhuri A., Ghanim H., Arora P. Improving the residual risk of renal and cardiovascular outcomes in diabetic kidney disease: A review of pathophysiology, mechanisms, and evidence from recent trials. Diabetes Obes Metab. 2022; 24(3): 365–76.https://dx.doi.org/10.1111/dom.14601. 19. Barutta F., Bellini S., Gruden G. Mechanisms of podocyte injury and implications for diabetic nephropathy. Clin Sci (Lond). 2022; 136(7): 493–520. https://dx.doi.org/10.1042/CS20210625. 20. Lane P.H., Steffes M.W., Mauer S.M. Glomerular structure in IDDM women with low glomerular filtration rate and normal urinary albumin excretion. Diabetes. 1992; 41(5): 581–86. https://dx.doi.org/10.2337/diab.41.5.581. 21. Dwyer J.P., Parving H.H., Hunsicker L.G. et al Renal dysfunction in the presence of normoalbuminuria in type 2 diabetes: results from the DEMAND Study. Cardiorenal Med. 2012; 2(1): 1–10. https://dx.doi.org/10.1159/000333249. 22. Kramer H.J., Nguyen Q.D., Curhan G., Hsu C.Y. Renal insufficiency in the absence of albuminuria and retinopathy among adults with type 2 diabetes mellitus. JAMA. 2003; 289(24): 3273–77. https://dx.doi.org/10.1001/jama.289.24.3273. 23. Afkarian M., Zelnick L.R., Hall Y.N. et al. Clinical manifestations of kidney disease among US adults with diabetes, 1988–2014. JAMA. 2016; 316(6): 602–10. https://dx.doi.org/10.1001/jama.2016.10924. 24. Mende C.W. Chronic kidney disease and SGLT2 inhibitors: A review of the evolving treatment landscape. Adv Ther. 2022; 39(1): 148–64. https://dx.doi.org/10.1007/s12325-021-01994-2 25. Porrini E., Ruggenenti P., Mogensen C.E. et al.; ERA-EDTA Diabesity Working Group. Non-proteinuric pathways in loss of renal function in patients with type 2 diabetes. Lancet Diabetes Endocrinol. 2015; 3(5): 382–91.https://dx.doi.org/10.1016/S2213-8587(15)00094-7. 26. Penno G., Solini A., Bonora E. et al.; Renal Insufficiency And Cardiovascular Events (RIACE) Study Group. Clinical significance of nonalbuminuric renal impairment in type 2 diabetes. J Hypertens. 2011; 29(9): 1802–9.https://dx.doi.org/10.1097/HJH.0b013e3283495cd6. 27. Boronat M., Garcia-Canton C., Quevedo V. et al. Non-albuminuric renal disease among subjects with advanced stages of chronic kidney failure related to type 2 diabetes mellitus. Ren Fail. 2014; 36(2): 166–70. https://dx.doi.org/10.3109/0886022X.2013.835266. 28. Климонтов В.В., Корбут А.И., Фазуллина О.Н. с соавт. Клинико-лабораторная характеристика вариантов хронической болезни почек у больных сахарным диабетом 2 типа. Сахарный диабет. 2019; 22(6): 515–525. [Klimontov V.V., Korbut A.I., Fazullina O.N. Clinical and laboratory characteristics of the patterns of chronic kidney disease in patients with type 2 diabetes. Sakharniy diabet = Diabetes Mellitus. 2019; 22(6): 515–525 (In Russ.)]. https://dx.doi.org/10.14341/DM10277. EDN: MZDRAX. 29. McCullough P.A. CKD and cardiovascular disease in screened highrisk volunteer and general populations: the Kidney Early Evaluation Program (KEEP) and National Health and Nutrition Examination Survey (NHANES) 1999–2004. Am J Kidney Dis. 2008; 51(4 Suppl. 2): S38–S45. https://dx.doi.org/10.1053/j.ajkd.2007.12.017. 30. Svensson M.K., Cederholm J., Eliasson B. et al.; Swedish National Diabetes Register. Albuminuria and renal function as predictors of cardiovascular events and mortality in a general population of patients with type 2 diabetes: A nationwide observational study from the Swedish National Diabetes Register. Diab Vasc Dis Res. 2013; 10(6): 520–29. https://dx.doi.org/10.1177/1479164113500798. 31. Дедов И.И., Шестакова М.В., Майоров А.Ю. с соавт. «Алгоритмы специализированной медицинской помощи больным сахарным диабетом». Под редакцией И.И. Дедова, М.В. Шестаковой, А.Ю. Майорова. 10-й выпуск. Сахарный диабет. 2021; 24(S1): 1–148. [Dedov I.I., Shestakova M.V., Mayorov A.Yu. Standards of specialized diabetes care. Edited by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 10th edition. Sakharniy diabet = Diabetes mellitus. 2021; 24(S1): 1–148 (In Russ.)].https://dx.doi.org/10.14341/DM12802. EDN: ISOZCM. 32. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO 2020 clinical practice guideline for diabetes management in chronic kidney disease. Kidney Int. 2020; 98(4S): S1–S115. https://dx.doi.org/10.1016/j.kint.2020. 06.019. 33. Jung C.Y., Yoo T.H. Pathophysiologic mechanisms and potential biomarkers in diabetic kidney disease. Diabetes Metab J. 2022; 46(2): 181–97. https://dx.doi.org/10.4093/dmj.2021.0329. 34. Teng J., Dwyer K.M., Hill P. et al. Spectrum of renal disease in diabetes. Nephrology (Carlton). 2014; 19(9): 528–36.https://dx.doi.org/10.1111/nep.12288. 35. Tervaert T.W., Mooyaart A.L., Amann K. et al.; Renal Pathology Society. Pathologic classification of diabetic nephropathy. J Am Soc Nephrol. 2010; 21(4): 556–63. https://dx.doi.org/10.1681/ASN.2010010010. 36. American Diabetes Association Professional Practice Committee, Draznin B., Aroda V.R., Bakris G. et al. 9. Pharmacologic approaches to glycemic treatment: Standards of medical care in diabetes-2022. Diabetes Care. 2022; 45(Suppl 1): S125–S143.https://dx.doi.org/10.2337/dc22-S009. 37. Diabetes Control and Complications Trial Research Group, Nathan D.M., Genuth S., Lachin J. et al. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulindependent diabetes mellitus. N Engl J Med. 1993; 329(14): 977–86. https://dx.doi.org/10.1056/NEJM199309303291401. 38. ADVANCE Collaborative Group, Patel A., MacMahon S., Chalmers J. et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008; 358(24): 2560–72. https://dx.doi.org/10.1056/NEJMoa0802987. 39. Ismail-Beigi F., Craven T., Banerji M.A. et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial. Lancet. 2010; 376(9739): 419–30.https://dx.doi.org/10.1016/S0140-6736(10)60576-4. 40. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet. 1998; 352(9131): 837–53. 41. Wanner C., Inzucchi S.E., Lachin J.M. et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016; 375(4): 323–34. https://dx.doi.org/10.1056/NEJMoa1515920. 42. Neal B., Perkovic V., Mahaffey K.W. et al.; CANVAS Programme Collaborative Group. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017; 377(7): 644–57. https://dx.doi.org/10.1056/NEJMoa1611925. 43. Perkovic V., Jardine M.J., Neal B. et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med. 2019; 380(24): 2295–306. https://dx.doi.org/10.1056/NEJMoa1811744 44. Heerspink H.J.L., Stefansson B.V., Correa-Rotter R. et al.; DAPA-CKD Trial Committees and Investigators. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020; 383(15): 1436–46. https://dx.doi.org/10.1056/NEJMoa2024816. 45. Heerspink H.J., Perkins B.A., Fitchett D.H. et al. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016; 134(10): 752–72.https://dx.doi.org/10.1161/CIRCULATIONAHA.116.021887. 46. Nevola R., Alfano M., Pafundi P.C. et al. Cardiorenal impact of SGLT-2 inhibitors: A conceptual revolution in the management of type 2 diabetes, heart failure and chronic kidney disease. Rev Cardiovasc Med. 2022; 23(3): 106. https://dx.doi.org/10.31083/j.rcm2303106. 47. Holman R.R., Bethel M.A., Mentz R.J. et al. Effects of once-weekly exenatide on cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2017; 377(13): 1228–39. https://dx.doi.org/10.1056/NEJMoa1612917. 48. Pfeffer M.A., Claggett B., Diaz R. et al.; ELIXA Investigators. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome. N Engl J Med. 2015; 373(23): 2247–57. https://dx.doi.org/10.1056/NEJMoa1509225. 49. Marso S.P., Daniels G.H., Brown-Frandsen K. et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016; 375(4): 311–22. https://dx.doi.org/10.1056/NEJMoa1603827. 50. Marso S.P., Bain S.C., Consoli A. et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016; 375(19): 1834–44. https://dx.doi.org/10.1056/NEJMoa1607141. 51. Gerstein H.C, Colhoun H.M., Dagenais G.R. et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): A double-blind, randomised placebo-controlled trial. Lancet. 2019; 394(10193): 121–30. https://dx.doi.org/10.1016/S0140-6736(19)31149-3. 52. Husain M., Birkenfeld A.L., Donsmark M. et al. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2019; 381(9): 841–51. https://dx.doi.org/10.1056/NEJMoa1901118. 53. Hernandez A.F., Green, J.B., Janmohamed S. et al. Albiglutide and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease (Harmony Outcomes): A double-blind, randomised placebo-controlled trial. Lancet. 2018; 392(10157): 1519– 29. https://dx.doi.org/10.1016/S0140-6736(18)32261-X. 54. Kristensen S.L., Rorth R., Jhund P.S. et al. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: A systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 2019; 7(10): 776–85. https://dx.doi.org/10.1016/S2213-8587(19)30249-9. 55. Chen J., Wu C., Jenq C. et al. Association of glucagon-like peptide-1 receptor agonist vs dipeptidyl peptidase-4 inhibitor use with mortality among patients with type 2 diabetes and advanced chronic kidney disease. JAMA Netw Open. 2022; 5(3): e221169.https://dx.doi.org/10.1001/jamanetworkopen.2022.1169 56. Pugliese G., Penno G., Natali A. et al.; Italian Diabetes Society and the Italian Society of Nephrology. Diabetic kidney disease: New clinical and therapeutic issues. Joint position statement of the Italian Diabetes Society and the Italian Society of Nephrology on «The natural history of diabetic kidney disease and treatment of hyperglycemia in patients with type 2 diabetes and impaired renal function». J Nephrol. 2020; 33(1): 9–35. https://dx.doi.org/10.1007/s40620-019-00650-x.
Tatyana Yu. Demidova, Dr. med. habil., professor, head of the Department of endocrinology of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117321, Moscow, 1 Ostrovityanova Str. E-mail: t.y.demidova@gmail.com. ORCID: https://orcid.org/0000-0001-6385-540X. eLIBRARY.RU SPIN: 9600-9796. ScopusAuthorID: 7003771623
Maryam Ya. Izmailova, assistant at the Department of endocrinology of the Faculty of general medicine, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia. Address: 117321, Moscow,
1 Ostrovityanova Str. E-mail: maremizm@gmail.com. ORCID: https://orcid.org/0000-0002-1385-0245