Stress and its influence at the cardiovascular system


DOI: https://dx.doi.org/10.18565/therapy.2022.9.118-128

Belyaeva I.A., Pyokhova Ya.G., Vershinin A.A.

1) N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, Moscow; 2) National Medical Research Center for Rehabilitation and Balneology of the Ministry of Healthcare of Russia, Moscow
Abstract. A modern view on the role of physical and psychosocial stress in the development of cardiovascular diseases (CVD) is highlighted in the review. The review presents stress research directions and application of their results in clinical practice, current knowledge about the transformation of brain architectonics, cardiovascular system, and the correlation with clinical symptoms of CVD. The search depth of publications was 10 years, from 2011 to 2021, and a number of earlier, fundamental works on stress subject area were also included in the review. For the selection of publications, the PubMed, MEDLINE, Cochrane Library databases were studied, were selected the studies that meet the requirements of the class and level of evidence IA and IB, IIA (randomized clinical trials, meta-analyses, systematic reviews).

Literature


1. Engert V., Linz R., Grant J.A. Embodied stress: The physiological resonance of psychosocial stress. Psychoneuroendocrinology. 2019; 105: 138–46. https://dx.doi.org/10.1016/j.psyneuen.2018.12.221.


2. Chrousos G.P. Stress and disorders of the stress system. Nat Rev Endocrinol. 2009; 5(7): 374–81.https://dx.doi.org/10.1038/nrendo.2009.106.


3. Behrends С., Bischofberger J., Deutzmann R. et al. Physiologie. Stuttgart: Thieme. 2017; 831 pp. ISBN-10: 978-3-13-138413-3; ISBN-13: 978-3-13-243862-0. https://dx.doi.org/10.1055/b-004-132217.


4. Noushad S., Sajid U., Ahmed S., Saleem Y. Oxidative stress mediated neurodegeneration: A cellular perspective. Int J Endors Health Sci Res. 2019; 7: 192–212. https://dx.doi.org/10.29052/IJEHSR.v7.i4.2019.192-212.


5. Marty M.A., Sega S.L. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Publishing. 2013; 947 pp. ISBN-10: 9780890425541; ISBN-13: 978-0890425541.https://dx.doi.org/10.1002/9781118625392.wbecp0308.


6. Iob E., Steptoe A. Cardiovascular disease and hair cortisol: A novel biomarker of chronic stress. Curr Cardiol Rep. 2019; 21(10): 116. https://dx.doi.org/10.1007/s11886-019-1208-7.


7. Hyde J., Ryan K.M., Waters A.M. Waters. Psychophysiological markers of fear and anxiety. Curr Psychiatry Rep. 2019; 21(7): 56.https://dx.doi.org/10.1007/s11920-019-1036-x.


8. Lezama-Martinez D., Valencia-Hernandez I., Flores-Monroy J., Martinez-Aguilar L. Combination of β adrenergic receptor block and renin-angiotensin system inhibition diminished the angiotensin II-induced vasoconstriction and increased bradykinin-induced vasodilation in hypertension. Dose Response. 2017; 15(4): 1559325817737932. https://dx.doi.org/10.1177/1559325817737932.


9. Johnson T.V., Abbasi A., Master V.A. Master. Systematic review of the evidence of a relationship between chronic psychosocial stress and C-reactive protein. Mol Diagn Ther. 2013; 17(3): 147–64. https://dx.doi.org/10.1007/s40291-013-0026-7.


10. McEwen B.S., Bowles N.P., Gray J.D. et al. Mechanisms of stress in the brain. Nature Neuroscience. 2015; 18(10): 1353–63.https://dx.doi.org/10.1038/nn.4086.


11. Engert V., Kok B.E., Puhlmann L.M.C. et al. Exploring the multidimensional complex systems structure of the stress response and its relation to health and sleep outcomes. Brain Behav Immun. 2018; 73: 390–402. https://dx.doi.org/10.1016/j.bbi.2018.05.023.


12. Miller R., Wojtyniak J.G., Weckesser L.J. et al. How to disentangle psychobiological stress reactivity and recovery: A comparison of model-based and non-compartmental analyses of cortisol concentrations. Psychoneuroendocrinology. 2018; 90: 194–210.https://dx.doi.org/10.1016/j.psyneuen.2017.12.019.


13. Sapolsky R.M. Glucocorticoids, the evolution of the stress-response, and the primate predicament. Neurobiol Stress. 2021; 14: 100320. https://dx.doi.org/10.1016/j.ynstr.2021.100320.


14. Trepel M. Neuroanatomie. Struktur und Funktion. Muenchen; Urban & Fischer; 2021; 448 pp. (In German). ISBN-10: 343741299X; ISBN-13: 9783437412998.


15. Caradonna S.G., Paul M.R., Marrocco J. An allostatic epigenetic memory on chromatin footprints after double-hit acute stress. Neurobiol Stress. 2022; 4(20): 100475. https://dx.doi.org/10.1016/j.ynstr.2022.100475.


16. Rincon-Cortes M., Herman J.P., Lupien S. et al. Stress: Influence of sex, reproductive status and gender. Neurobiol Stress. 2019; 9(10): 100155. https://dx.doi.org/10.1016/j.ynstr.2019.100155


17. Heller E.A., Cates H.M., Pena C.J.et al. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci. 2014; 17(12): 1720–27. https://dx.doi.org/10.1038/nn.3871.


18. Sapolsky R.M. Stress and the brain: Individual variability and the inverted-U. Nat Neurosci. 2015; 18(10): 1344–46.https://dx.doi.org/10.1038/nn.4109.


19. Hunter R.G., Gagnidze K., McEwen B.S., Pfaff D.W. Stress and the dynamic genome: Steroids, epigenetics, and the transposome. Proc Natl Acad Sci USA. 2015; 112(22): 6828–33. https://dx.doi.org/10.1073/pnas.1411260111.


20. Mendez Colmenares A., Voss M.W., Fanning J. et al. White matter plasticity in healthy older adults: The effects of aerobic exercise. Neuroimage. 2021; 239: 118305. https://dx.doi.org/10.1016/j.neuroimage.2021.118305.


21. Popoli M., Yan Z., McEwen B.S. et al. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 2012; 13(1): 22–37. https://dx.doi.org/10.1038/nrn3138.


22. Treccani G., Musazzi L., Perego C. et al. Stress and corticosterone increase the readily releasable pool of glutamate vesicles in synaptic terminals of prefrontal and frontal cortex. Mol Psychiatry. 2014; 19(4): 433–43. https://dx.doi.org/10.1038/mp.2014.5.


23. Phillips C. Brain-derived neurotrophic factor, depression, and physical activity: Making the neuroplastic connection. Neural Plast. 2017; 2017: 7260130. https://dx.doi.org/10.1155/2017/7260130.


24. Vyas A., Mitra R., Rao B.S.S. et al. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 2002; 22(15): 6810–18. https://dx.doi.org/10.1523/JNEUROSCI.22-15-06810.2002.


25. Rao R.P., Anilkumar S., McEwen B.S. et al. Glucocorticoids protect against the delayed behavioral and cellular effects of acute stress on the amygdala. Biol Psychiatry. 2012; 72(6): 466–75. https://dx.doi.org/10.1016/j.biopsych.2012.04.008.


26. McEwen B.S., Morrison J.H. The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron. 2013; 79(1): 16–29. https://dx.doi.org/10.1016/j.neuron.2013.06.028.


27. Karatsoreos I.N., McEwen B.S. Timing is everything: A collection on how clocks affect resilience in biological systems. F1000Res. 2014; 3: 273. https://dx.doi.org/10.12688/f1000research.5756.1.


28. Bayrak S., de Wael R.V., Schaare H.L. et al. Heritability of hippocampal functional and microstructural organization. Neuroimage. 2022; 264: 119656. https://dx.doi.org/10.1016/j.neuroimage.2022.119656. Online ahead of print.


29. Kim E.J., Pellman B., Kim J.J. Stress effects on the hippocampus: A critical review. Learn Mem. 2015; 22(9): 411–16.https://dx.doi.org/10.1101/lm.037291.114.


30. Li M., Zhang X.W., Hou W.S. et al. Impact of depression on incident stroke: A meta-analysis. Int J Cardiol. 2015; 180: 103–10.https://dx.doi.org/10.1016/j.ijcard.2014.11.198.


31. Halfon N., Larson K., Lu M. et al. Lifecourse health development: Past, present and future. Matern Child Health J. 2014; 8(2): 344–65. https://dx.doi.org/10.1007/s10995-013-1346-2.


32. Cusack K., Jonas D.E., Forneris C.A. et al. Psychological treatments for adults with posttraumatic stress disorder: A systematic review and meta-analysis. Clin Psychol Rev. 2016; 43: 128–41. https://dx.doi.org/10.1016/j.cpr.2015.10.003.


33. Nose M., Ballette F., Bighelli I. et al. Psychosocial interventions for post-traumatic stress disorder in refugees and asylum seekers resettled in high-income countries: Systematic review and meta-analysis. PLoS ONE. 2017; 12(2): e0171030.https://dx.doi.org/10.1371/journal.pone.0171030.


34. Meng L.B., Zhang Y.M., Luo Y. et al. Chronic stress a potential suspect zero of atherosclerosis: A systematic review. Front Cardiovasc Med. 2021; 8: 738654. https://dx.doi.org/10.3389/fcvm.2021.738654.


35. Tindle H.A., Duncan M.S., Liu S. et al. Optimism, pessimism, cynical hostility, and biomarkers of metabolic function in the Women’s Health Initiative. J Diabetes. 2018; 10(6): 512–23. https://dx.doi.org/10.1111/1753-0407.12584;


36. Cohen B.E., Edmondson D., Kronish I.M. State of the art review: Depression, stress, anxiety, and cardiovascular disease. Am J Hypertens. 2015; 28(11): 1295–302. https://dx.doi.org/10.1093/ajh/hpv047.


37. Akosile W., Colquhoun D, Young R. et al. The association between post-traumatic stress disorder and coronary artery disease: A meta-analysis. Australas Psychiatry. 2018; 26(5): 524–30. https://dx.doi.org/10.1177/1039856218789779.


38. Richardson S., Shaffer J.A., Falzon L., et al. Meta-analysis of perceived stress and its association with incident coronary heart disease. Am J Cardiol. 2012; 110(12): 1711–16. https://dx.doi.org/10.1016/j.amjcard.2012.08.004.


39. Steptoe A., Kivimaki M. Stress and cardiovascular disease: An update on current knowledge. Annu Rev Public Health. 2013; 34: 337–54. https://dx.doi.org/10.1146/annurev-publhealth-031912-114452.


40. Emdin C.A., Odutayo A., Wong C.X. et al. Meta-analysis of anxiety as a risk factor for cardiovascular disease. Am J Cardiol. 2016; 118(4): 511–19. https://dx.doi.org/10.1016/j.amjcard.2016.05.041


41. Hung M.Y., Mao C.T., Hung M.J. et al. Coronary artery spasm as related to anxiety and depression: A nationwide population-based study. Psychosom Med. 2019; 81(3): 237–45. https://dx.doi.org/10.1097/PSY.0000000000000666.


42. Gan Y., Gong Y., Tong X. et al. Depression and the risk of coronary heart disease: A metaanalysis of prospective cohort studies. BMC Psychiatry. 2014; 14: 371. https://dx.doi.org/10.1186/s12888-014-0371-z.


43. Bartoli F., Lillia N., Lax А. et al. Depression after stroke and risk of mortality: A systematic review and meta-analysis. Stroke Res Treat. 2013; 2013: 862978. https://dx.doi.org/10.1155/2013/862978.


44. Sumner J.A., Nishimi K.M., Koenen K.C. et al. Posttraumatic stress disorder and inflammation: Untangling issues of bidirectionality. Biol Psychiatry. 2020; 87(10): 885–97. https://dx.doi.org/10.1016/j.biopsych.2019.11.005.


45. Arnett D.K., Blumenthal R.S., Albert M.A. et al. ACC/AHA guideline on the prima-ry prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2019; 74(10): e177–e232. https://dx.doi.org/10.1016/j.jacc.2019.03.010.


46. Noushad S., Ahmed S., Ansari B. et al. Physiological biomarkers of chronic stress: A systematic review. Int J Health Sci (Qassim). 2021; 15(5): 46–59.


47. Levine G.N., Cohen B.E., Commodore-Mensah Y. et al. Psychological health, well-being, and the mind-heart-body connection: A scientific statement from the American Heart Association. Circulation. 2021; 143(10): e763–e783.https://dx.doi.org/10.1161/CIR.0000000000000947.


48. Nater U.M., Skoluda N., Strahler J. Biomarkers of stress in behavioural medicine. Curr Opin Psychiatry 2013; 26(5): 440–45.https://dx.doi.org/10.1097/YCO.0b013e328363b4ed.


49. Adam E.K., Quinn M.E., Tavernier R. et al. Diurnal cortisol slopes and mental and physical health out-comes: A systematic review and meta-analysis. Psychoneuroendocrinology. 2017; 83: 25–41. https://dx.doi.org/10.1016/j.psyneuen.2017.05.018.


50. Stalder T., Steudte-Schmiedgen S., Alexander N. et al. Stress-related and basic determinants of hair cortisol in humans: A meta-analysis. Psychoneuroendocrinology. 2017; 77: 261–74. https://dx.doi.org/10.1016/j.psyneuen.2016.12.017.


51. Nater U.M., Rohleder N. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology. 2009; 34(4): 486–96. https://dx.doi.org/10.1016/j.psyneuen.2009.01.014.


52. Bosch J.A., Veerman E.C., de Geus E.J., Proctor G.B. α-Amylase as a reliable and convenient measure of sympathetic activity: Don’t start salivating just yet! Psychoneuroendocrinology. 2011; 36(4): 449–53. https://dx.doi.org/10.1016/j.psyneuen.2010.12.019.


53. Engeland C.G., Bosch J.A., Rohleder N. Salivary biomarkers in psychoneuroimmunology. Curr Opin Behav Sci. 2019; 28: 58–65. https://dx.doi.org/10.1016/j.cobeha.2019.01.007.


54. Schafer I., Gast U., Hofmann A. et al. Posttraumatische Belastung-sstoerung. S3-LEILINIE der DeGPT. Version: 19.12.2019. S.119. https://dx.doi.org/10.1007/978-3-662-59783-5.


55. Abdallah C.G., Averill L.A., Akiki T.J. et al. The neurobiology and pharmacotherapy of posttraumatic stress disorder. Pharmacol Toxicol. 2019; 59: 171–89. https://dx.doi.org/10.1146/annurev-pharmtox-010818-021701.


56. Kanel R., Schmid J.P., Meister-Langraf R.E. et al. Pharmacotherapy in the management of anxiety and pain during acute coronary syndromes and the risk of developing symptoms of posttraumatic stress disorder. J Am Heart Assoc. 2021; 10(2): e018762.https://dx.doi.org/10.1161/JAHA.120.018762.


57. Zhang A., Borhneimer L.A., Weaver A. et al. Cognitive behavioral therapy for primary care depression and anxiety: A secondary meta-analytic review using robust variance estimation in meta-regression. J Behav Med. 2019; 42(6): 1117–41.https://dx.doi.org/10.1007/s10865-019-00046-z.


58. Gerger H., Munder T., Gemperli A. et al. Integrating fragmented evidence by network meta-analysis: Relative effectiveness of psychological interventions for adults with post-traumatic stress disorder. Psychol Med. 2014; 44(15): 3151–64.https://dx.doi.org/10.1017/S0033291714000853.


59. Lesperance F., Frasure-Smith N., Koszycki D. et al.; CREATE Investigators. Effects of citalopram and interpersonal psychotherapy on depression in patients with coronary artery disease: The Canadian Cardiac Randomized Evaluation of Antidepressant and Psychotherapy Efficacy (CREATE) trial. JAMA. 2007; 297(4): 367–79. https://dx.doi.org/10.1001/jama.297.4.367.


60. Grace S.L., Medina-Inojosa J.R., Thomas R.J. et al. Antidepressant use by class: Association with major adverse cardiac events in patients with coronary artery disease. Psychother Psychosom. 2018; 87(2): 85–94. https://dx.doi.org/10.1159/000486794.


61. Almuwaqqat Z., Jokhadar M., Norby F.L. et al. Association of antidepressant medication type with the incidence of cardiovascular disease in the ARIC study. J Am Heart Assoc. 2019; 8(11): e012503. https://dx.doi.org/10.1161/JAHA.119.012503.


62. Kim J.M., Stewart R., Lee Y.S. et al. Effect of escitalopram vs placebo treatment for depression on long-term cardiac outcomes in patients with acute coronary syndrome: a randomized clinical trial. JAMA. 2018; 320(4): 350–58.https://dx.doi.org/10.1001/jama.2018.9422.


63. Jiang W., Velazquez E.J., Kuchibhatla M. et al. Effect of escitalopram on mental stress-induced myocardial ischemia: Results of the REMIT trial. JAMA. 2013; 309(20): 2139–49. https://dx.doi.org/10.1001/jama.2013.5566.


64. Wang L., Wang R., Liu L. et al. Effects of SSRIs on peripheral inflammatory markers in patients with major depressive disorder: A systematic review and meta-analysis. Brain Behav Immun. 2019; 79: 24–38. https://dx.doi.org/10.1016/j.bbi.2019.02.021.


65. Bajaj A., Bronson C.A., Habel M. et al. Dispositional optimism and cardiovascular reactivity accompanying anger and sadness in young adults. Ann Behav Med. 2019; 53(5): 466–75. https://dx.doi.org/10.1093/abm/kay058.


66. Rozanski A., Bavishi C., Kubzansky L.D. et al. Association of optimism with cardiovascular events and all-cause mortality: A systematic review and meta-analysis. JAMA Netw Open. 2019; 2(9): e1912200. https://dx.doi.org/10.1001/jamanetworkopen.2019.12200.


67. Cavanagh C.E., Larkin K.T. A critical review of the «undoing hypothesis»: Do positive emotions undo the effects of stress? Appl Psychophysiol Biofeedback. 2018; 43(4): 259–73. https://dx.doi.org/10.1007/s10484-018-9412-6.


68. Cramer H., Lauche R., Anheyer D. et al. Yoga for anxiety: A systematic review and meta-analysis of randomized controlled trials. Depression and Anxiety. 2018: 35(9): 830–43. https://dx.doi.org/10.1002/da.22762.


69. Engert V., Kok B.E., Papassotiriou I. et al. Specific reduction in cortisol stress reactivity after social but not attention-based mental training. Sci Adv. 2017; 3(10): e1700495. https://dx.doi.org/10.1126/sciadv.1700495.


70. Davidson R.J., Kaszniak A.W. Conceptual and methodological issues in research on mindfulness and meditation. Am Psychol. 2015; 70(7): 581–92. https://dx.doi.org/10.1037/a0039512.


About the Autors


Irina A. Belyaeva, Dr. med. habil., professor, professor of the Department of neurology, neurosurgery and medical genetics, N.I. Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russia, chief researcher at the Department of neurorehabilitation and clinical psychology, National Medical Research Center for Rehabilitation and Balneology of the Ministry of Healthcare of Russia. Address: 119415, Moscow, 42/6 Lobachevskogo Str. E-mail: m-martin@inbox.ru. ORCID: https://orcid.org/0000-0002-2071-3345
Yana G. Pyokhova, researcher at the Department of neurorehabilitation and clinical psychology, National Medical Research Center for Rehabilitation and Balneology of the Ministry of Healthcare of Russia. Address: 121099, Moscow, 32 Novy Arbat Str. E-mail: PehovaYG@nmicrk.ru. ORCID: https://orcid.org/0000-0002-2754-1021
Aleksey A. Vershinin, cardiologist, functional diagnostics doctor at National Medical Research Center for Rehabilitation and Balneology of the Ministry of Healthcare of Russia. Address: 121099, Moscow, 32 Novy Arbat Str. E-mail: VershininAA@nmicrk.ru


Similar Articles


Бионика Медиа