Стресс и его влияние на сердечно-сосудистую систему


DOI: https://dx.doi.org/10.18565/therapy.2022.9.118-128

И.А. Беляева, Я.Г. Пехова, А.А. Вершинин

1) ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, г. Москва; 2) ФГБУ «Национальный медицинский исследовательский центр реабилитации и курортологии» Минздрава России, г. Москва
Аннотация. В обзоре отражен современный взгляд на роль физического и психосоциального стресса в развитии сердечно-сосудистых заболеваний (ССЗ). Представлены направления исследований стресса и применение их результатов в клинической практике, современные знания о трансформации архитектоники мозга, сердечно-сосудистой системы, связи с клиническими симптомами ССЗ. Глубина поиска публикаций составила 10 лет, с 2011 по 2021 г., также в обзор был включен ряд более ранних, основополагающих работ по стрессу. Для отбора публикаций были изучены базы данных PubMed, MEDLINE, Cochrane Library databases, выбраны исследования, отвечающие требованиям класса и уровня доказательств IA и IB, IIA (рандомизированные клинические исследования, метаанализы, систематические обзоры).

Литература


1. Engert V., Linz R., Grant J.A. Embodied stress: The physiological resonance of psychosocial stress. Psychoneuroendocrinology. 2019; 105: 138–46. https://dx.doi.org/10.1016/j.psyneuen.2018.12.221.


2. Chrousos G.P. Stress and disorders of the stress system. Nat Rev Endocrinol. 2009; 5(7): 374–81.https://dx.doi.org/10.1038/nrendo.2009.106.


3. Behrends С., Bischofberger J., Deutzmann R. et al. Physiologie. Stuttgart: Thieme. 2017; 831 pp. ISBN-10: 978-3-13-138413-3; ISBN-13: 978-3-13-243862-0. https://dx.doi.org/10.1055/b-004-132217.


4. Noushad S., Sajid U., Ahmed S., Saleem Y. Oxidative stress mediated neurodegeneration: A cellular perspective. Int J Endors Health Sci Res. 2019; 7: 192–212. https://dx.doi.org/10.29052/IJEHSR.v7.i4.2019.192-212.


5. Marty M.A., Sega S.L. American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). American Psychiatric Publishing. 2013; 947 pp. ISBN-10: 9780890425541; ISBN-13: 978-0890425541.https://dx.doi.org/10.1002/9781118625392.wbecp0308.


6. Iob E., Steptoe A. Cardiovascular disease and hair cortisol: A novel biomarker of chronic stress. Curr Cardiol Rep. 2019; 21(10): 116. https://dx.doi.org/10.1007/s11886-019-1208-7.


7. Hyde J., Ryan K.M., Waters A.M. Waters. Psychophysiological markers of fear and anxiety. Curr Psychiatry Rep. 2019; 21(7): 56.https://dx.doi.org/10.1007/s11920-019-1036-x.


8. Lezama-Martinez D., Valencia-Hernandez I., Flores-Monroy J., Martinez-Aguilar L. Combination of β adrenergic receptor block and renin-angiotensin system inhibition diminished the angiotensin II-induced vasoconstriction and increased bradykinin-induced vasodilation in hypertension. Dose Response. 2017; 15(4): 1559325817737932. https://dx.doi.org/10.1177/1559325817737932.


9. Johnson T.V., Abbasi A., Master V.A. Master. Systematic review of the evidence of a relationship between chronic psychosocial stress and C-reactive protein. Mol Diagn Ther. 2013; 17(3): 147–64. https://dx.doi.org/10.1007/s40291-013-0026-7.


10. McEwen B.S., Bowles N.P., Gray J.D. et al. Mechanisms of stress in the brain. Nature Neuroscience. 2015; 18(10): 1353–63.https://dx.doi.org/10.1038/nn.4086.


11. Engert V., Kok B.E., Puhlmann L.M.C. et al. Exploring the multidimensional complex systems structure of the stress response and its relation to health and sleep outcomes. Brain Behav Immun. 2018; 73: 390–402. https://dx.doi.org/10.1016/j.bbi.2018.05.023.


12. Miller R., Wojtyniak J.G., Weckesser L.J. et al. How to disentangle psychobiological stress reactivity and recovery: A comparison of model-based and non-compartmental analyses of cortisol concentrations. Psychoneuroendocrinology. 2018; 90: 194–210.https://dx.doi.org/10.1016/j.psyneuen.2017.12.019.


13. Sapolsky R.M. Glucocorticoids, the evolution of the stress-response, and the primate predicament. Neurobiol Stress. 2021; 14: 100320. https://dx.doi.org/10.1016/j.ynstr.2021.100320.


14. Trepel M. Neuroanatomie. Struktur und Funktion. Muenchen; Urban & Fischer; 2021; 448 pp. (In German). ISBN-10: 343741299X; ISBN-13: 9783437412998.


15. Caradonna S.G., Paul M.R., Marrocco J. An allostatic epigenetic memory on chromatin footprints after double-hit acute stress. Neurobiol Stress. 2022; 4(20): 100475. https://dx.doi.org/10.1016/j.ynstr.2022.100475.


16. Rincon-Cortes M., Herman J.P., Lupien S. et al. Stress: Influence of sex, reproductive status and gender. Neurobiol Stress. 2019; 9(10): 100155. https://dx.doi.org/10.1016/j.ynstr.2019.100155


17. Heller E.A., Cates H.M., Pena C.J.et al. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci. 2014; 17(12): 1720–27. https://dx.doi.org/10.1038/nn.3871.


18. Sapolsky R.M. Stress and the brain: Individual variability and the inverted-U. Nat Neurosci. 2015; 18(10): 1344–46.https://dx.doi.org/10.1038/nn.4109.


19. Hunter R.G., Gagnidze K., McEwen B.S., Pfaff D.W. Stress and the dynamic genome: Steroids, epigenetics, and the transposome. Proc Natl Acad Sci USA. 2015; 112(22): 6828–33. https://dx.doi.org/10.1073/pnas.1411260111.


20. Mendez Colmenares A., Voss M.W., Fanning J. et al. White matter plasticity in healthy older adults: The effects of aerobic exercise. Neuroimage. 2021; 239: 118305. https://dx.doi.org/10.1016/j.neuroimage.2021.118305.


21. Popoli M., Yan Z., McEwen B.S. et al. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 2012; 13(1): 22–37. https://dx.doi.org/10.1038/nrn3138.


22. Treccani G., Musazzi L., Perego C. et al. Stress and corticosterone increase the readily releasable pool of glutamate vesicles in synaptic terminals of prefrontal and frontal cortex. Mol Psychiatry. 2014; 19(4): 433–43. https://dx.doi.org/10.1038/mp.2014.5.


23. Phillips C. Brain-derived neurotrophic factor, depression, and physical activity: Making the neuroplastic connection. Neural Plast. 2017; 2017: 7260130. https://dx.doi.org/10.1155/2017/7260130.


24. Vyas A., Mitra R., Rao B.S.S. et al. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 2002; 22(15): 6810–18. https://dx.doi.org/10.1523/JNEUROSCI.22-15-06810.2002.


25. Rao R.P., Anilkumar S., McEwen B.S. et al. Glucocorticoids protect against the delayed behavioral and cellular effects of acute stress on the amygdala. Biol Psychiatry. 2012; 72(6): 466–75. https://dx.doi.org/10.1016/j.biopsych.2012.04.008.


26. McEwen B.S., Morrison J.H. The brain on stress: Vulnerability and plasticity of the prefrontal cortex over the life course. Neuron. 2013; 79(1): 16–29. https://dx.doi.org/10.1016/j.neuron.2013.06.028.


27. Karatsoreos I.N., McEwen B.S. Timing is everything: A collection on how clocks affect resilience in biological systems. F1000Res. 2014; 3: 273. https://dx.doi.org/10.12688/f1000research.5756.1.


28. Bayrak S., de Wael R.V., Schaare H.L. et al. Heritability of hippocampal functional and microstructural organization. Neuroimage. 2022; 264: 119656. https://dx.doi.org/10.1016/j.neuroimage.2022.119656. Online ahead of print.


29. Kim E.J., Pellman B., Kim J.J. Stress effects on the hippocampus: A critical review. Learn Mem. 2015; 22(9): 411–16.https://dx.doi.org/10.1101/lm.037291.114.


30. Li M., Zhang X.W., Hou W.S. et al. Impact of depression on incident stroke: A meta-analysis. Int J Cardiol. 2015; 180: 103–10.https://dx.doi.org/10.1016/j.ijcard.2014.11.198.


31. Halfon N., Larson K., Lu M. et al. Lifecourse health development: Past, present and future. Matern Child Health J. 2014; 8(2): 344–65. https://dx.doi.org/10.1007/s10995-013-1346-2.


32. Cusack K., Jonas D.E., Forneris C.A. et al. Psychological treatments for adults with posttraumatic stress disorder: A systematic review and meta-analysis. Clin Psychol Rev. 2016; 43: 128–41. https://dx.doi.org/10.1016/j.cpr.2015.10.003.


33. Nose M., Ballette F., Bighelli I. et al. Psychosocial interventions for post-traumatic stress disorder in refugees and asylum seekers resettled in high-income countries: Systematic review and meta-analysis. PLoS ONE. 2017; 12(2): e0171030.https://dx.doi.org/10.1371/journal.pone.0171030.


34. Meng L.B., Zhang Y.M., Luo Y. et al. Chronic stress a potential suspect zero of atherosclerosis: A systematic review. Front Cardiovasc Med. 2021; 8: 738654. https://dx.doi.org/10.3389/fcvm.2021.738654.


35. Tindle H.A., Duncan M.S., Liu S. et al. Optimism, pessimism, cynical hostility, and biomarkers of metabolic function in the Women’s Health Initiative. J Diabetes. 2018; 10(6): 512–23. https://dx.doi.org/10.1111/1753-0407.12584;


36. Cohen B.E., Edmondson D., Kronish I.M. State of the art review: Depression, stress, anxiety, and cardiovascular disease. Am J Hypertens. 2015; 28(11): 1295–302. https://dx.doi.org/10.1093/ajh/hpv047.


37. Akosile W., Colquhoun D, Young R. et al. The association between post-traumatic stress disorder and coronary artery disease: A meta-analysis. Australas Psychiatry. 2018; 26(5): 524–30. https://dx.doi.org/10.1177/1039856218789779.


38. Richardson S., Shaffer J.A., Falzon L., et al. Meta-analysis of perceived stress and its association with incident coronary heart disease. Am J Cardiol. 2012; 110(12): 1711–16. https://dx.doi.org/10.1016/j.amjcard.2012.08.004.


39. Steptoe A., Kivimaki M. Stress and cardiovascular disease: An update on current knowledge. Annu Rev Public Health. 2013; 34: 337–54. https://dx.doi.org/10.1146/annurev-publhealth-031912-114452.


40. Emdin C.A., Odutayo A., Wong C.X. et al. Meta-analysis of anxiety as a risk factor for cardiovascular disease. Am J Cardiol. 2016; 118(4): 511–19. https://dx.doi.org/10.1016/j.amjcard.2016.05.041


41. Hung M.Y., Mao C.T., Hung M.J. et al. Coronary artery spasm as related to anxiety and depression: A nationwide population-based study. Psychosom Med. 2019; 81(3): 237–45. https://dx.doi.org/10.1097/PSY.0000000000000666.


42. Gan Y., Gong Y., Tong X. et al. Depression and the risk of coronary heart disease: A metaanalysis of prospective cohort studies. BMC Psychiatry. 2014; 14: 371. https://dx.doi.org/10.1186/s12888-014-0371-z.


43. Bartoli F., Lillia N., Lax А. et al. Depression after stroke and risk of mortality: A systematic review and meta-analysis. Stroke Res Treat. 2013; 2013: 862978. https://dx.doi.org/10.1155/2013/862978.


44. Sumner J.A., Nishimi K.M., Koenen K.C. et al. Posttraumatic stress disorder and inflammation: Untangling issues of bidirectionality. Biol Psychiatry. 2020; 87(10): 885–97. https://dx.doi.org/10.1016/j.biopsych.2019.11.005.


45. Arnett D.K., Blumenthal R.S., Albert M.A. et al. ACC/AHA guideline on the prima-ry prevention of cardiovascular disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2019; 74(10): e177–e232. https://dx.doi.org/10.1016/j.jacc.2019.03.010.


46. Noushad S., Ahmed S., Ansari B. et al. Physiological biomarkers of chronic stress: A systematic review. Int J Health Sci (Qassim). 2021; 15(5): 46–59.


47. Levine G.N., Cohen B.E., Commodore-Mensah Y. et al. Psychological health, well-being, and the mind-heart-body connection: A scientific statement from the American Heart Association. Circulation. 2021; 143(10): e763–e783.https://dx.doi.org/10.1161/CIR.0000000000000947.


48. Nater U.M., Skoluda N., Strahler J. Biomarkers of stress in behavioural medicine. Curr Opin Psychiatry 2013; 26(5): 440–45.https://dx.doi.org/10.1097/YCO.0b013e328363b4ed.


49. Adam E.K., Quinn M.E., Tavernier R. et al. Diurnal cortisol slopes and mental and physical health out-comes: A systematic review and meta-analysis. Psychoneuroendocrinology. 2017; 83: 25–41. https://dx.doi.org/10.1016/j.psyneuen.2017.05.018.


50. Stalder T., Steudte-Schmiedgen S., Alexander N. et al. Stress-related and basic determinants of hair cortisol in humans: A meta-analysis. Psychoneuroendocrinology. 2017; 77: 261–74. https://dx.doi.org/10.1016/j.psyneuen.2016.12.017.


51. Nater U.M., Rohleder N. Salivary alpha-amylase as a non-invasive biomarker for the sympathetic nervous system: current state of research. Psychoneuroendocrinology. 2009; 34(4): 486–96. https://dx.doi.org/10.1016/j.psyneuen.2009.01.014.


52. Bosch J.A., Veerman E.C., de Geus E.J., Proctor G.B. α-Amylase as a reliable and convenient measure of sympathetic activity: Don’t start salivating just yet! Psychoneuroendocrinology. 2011; 36(4): 449–53. https://dx.doi.org/10.1016/j.psyneuen.2010.12.019.


53. Engeland C.G., Bosch J.A., Rohleder N. Salivary biomarkers in psychoneuroimmunology. Curr Opin Behav Sci. 2019; 28: 58–65. https://dx.doi.org/10.1016/j.cobeha.2019.01.007.


54. Schafer I., Gast U., Hofmann A. et al. Posttraumatische Belastung-sstoerung. S3-LEILINIE der DeGPT. Version: 19.12.2019. S.119. https://dx.doi.org/10.1007/978-3-662-59783-5.


55. Abdallah C.G., Averill L.A., Akiki T.J. et al. The neurobiology and pharmacotherapy of posttraumatic stress disorder. Pharmacol Toxicol. 2019; 59: 171–89. https://dx.doi.org/10.1146/annurev-pharmtox-010818-021701.


56. Kanel R., Schmid J.P., Meister-Langraf R.E. et al. Pharmacotherapy in the management of anxiety and pain during acute coronary syndromes and the risk of developing symptoms of posttraumatic stress disorder. J Am Heart Assoc. 2021; 10(2): e018762.https://dx.doi.org/10.1161/JAHA.120.018762.


57. Zhang A., Borhneimer L.A., Weaver A. et al. Cognitive behavioral therapy for primary care depression and anxiety: A secondary meta-analytic review using robust variance estimation in meta-regression. J Behav Med. 2019; 42(6): 1117–41.https://dx.doi.org/10.1007/s10865-019-00046-z.


58. Gerger H., Munder T., Gemperli A. et al. Integrating fragmented evidence by network meta-analysis: Relative effectiveness of psychological interventions for adults with post-traumatic stress disorder. Psychol Med. 2014; 44(15): 3151–64.https://dx.doi.org/10.1017/S0033291714000853.


59. Lesperance F., Frasure-Smith N., Koszycki D. et al.; CREATE Investigators. Effects of citalopram and interpersonal psychotherapy on depression in patients with coronary artery disease: The Canadian Cardiac Randomized Evaluation of Antidepressant and Psychotherapy Efficacy (CREATE) trial. JAMA. 2007; 297(4): 367–79. https://dx.doi.org/10.1001/jama.297.4.367.


60. Grace S.L., Medina-Inojosa J.R., Thomas R.J. et al. Antidepressant use by class: Association with major adverse cardiac events in patients with coronary artery disease. Psychother Psychosom. 2018; 87(2): 85–94. https://dx.doi.org/10.1159/000486794.


61. Almuwaqqat Z., Jokhadar M., Norby F.L. et al. Association of antidepressant medication type with the incidence of cardiovascular disease in the ARIC study. J Am Heart Assoc. 2019; 8(11): e012503. https://dx.doi.org/10.1161/JAHA.119.012503.


62. Kim J.M., Stewart R., Lee Y.S. et al. Effect of escitalopram vs placebo treatment for depression on long-term cardiac outcomes in patients with acute coronary syndrome: a randomized clinical trial. JAMA. 2018; 320(4): 350–58.https://dx.doi.org/10.1001/jama.2018.9422.


63. Jiang W., Velazquez E.J., Kuchibhatla M. et al. Effect of escitalopram on mental stress-induced myocardial ischemia: Results of the REMIT trial. JAMA. 2013; 309(20): 2139–49. https://dx.doi.org/10.1001/jama.2013.5566.


64. Wang L., Wang R., Liu L. et al. Effects of SSRIs on peripheral inflammatory markers in patients with major depressive disorder: A systematic review and meta-analysis. Brain Behav Immun. 2019; 79: 24–38. https://dx.doi.org/10.1016/j.bbi.2019.02.021.


65. Bajaj A., Bronson C.A., Habel M. et al. Dispositional optimism and cardiovascular reactivity accompanying anger and sadness in young adults. Ann Behav Med. 2019; 53(5): 466–75. https://dx.doi.org/10.1093/abm/kay058.


66. Rozanski A., Bavishi C., Kubzansky L.D. et al. Association of optimism with cardiovascular events and all-cause mortality: A systematic review and meta-analysis. JAMA Netw Open. 2019; 2(9): e1912200. https://dx.doi.org/10.1001/jamanetworkopen.2019.12200.


67. Cavanagh C.E., Larkin K.T. A critical review of the «undoing hypothesis»: Do positive emotions undo the effects of stress? Appl Psychophysiol Biofeedback. 2018; 43(4): 259–73. https://dx.doi.org/10.1007/s10484-018-9412-6.


68. Cramer H., Lauche R., Anheyer D. et al. Yoga for anxiety: A systematic review and meta-analysis of randomized controlled trials. Depression and Anxiety. 2018: 35(9): 830–43. https://dx.doi.org/10.1002/da.22762.


69. Engert V., Kok B.E., Papassotiriou I. et al. Specific reduction in cortisol stress reactivity after social but not attention-based mental training. Sci Adv. 2017; 3(10): e1700495. https://dx.doi.org/10.1126/sciadv.1700495.


70. Davidson R.J., Kaszniak A.W. Conceptual and methodological issues in research on mindfulness and meditation. Am Psychol. 2015; 70(7): 581–92. https://dx.doi.org/10.1037/a0039512.


Об авторах / Для корреспонденции


Ирина Анатольевна Беляева, д.м.н., профессор, профессор кафедры неврологии, нейрохирургии и медицинской генетики ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, главный научный сотрудник отдела нейрореабилитации и клинической психологии ФГБУ «Национальный медицинский исследовательский центр реабилитации и курортологии» Минздрава России. Адрес: 119415, г. Москва, Лобачевского ул., д. 42., стр. 6. E-mail: m-martin@inbox.ru.
ORCID: https://orcid.org/0000-0002-2071-3345
Яна Геннадьевна Пехова, научный сотрудник отдела нейрореабилитации и клинической психологии ФГБУ «Национальный медицинский исследовательский центр реабилитации и курортологии» Минздрава России. Адрес: 121099, г. Москва, ул. Новый Арбат ул., д. 32. E-mail: PehovaYG@nmicrk.ru. ORCID: https://orcid.org/0000-0002-2754-1021
Алексей Анатольевич Вершинин, врач-кардиолог, врач функциональной диагностики ФГБУ «Национальный медицинский исследовательский центр реабилитации и курортологии» Минздрава России. Адрес: 121099,
г. Москва, ул. Новый Арбат ул., д. 32. E-mail: VershininAA@nmicrk.ru


Похожие статьи


Бионика Медиа