DOI: https://dx.doi.org/10.18565/therapy.2023.9.54-61
Ignatenko G.A., Mailyan E.A., Ignatenko T.S., Lesnichenko D.A., Valigun Ya.S., Tumanova S.V.
M. Gorky Donetsk State Medical University
1. Mincer D.L., Jialal I. Hashimoto Thyroiditis. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan. 2. Ihnatowicz P., Drywien M., Wator P., Wojsiat J. The importance of nutritional factors and dietary management of Hashimoto’s thyroiditis. Ann Agric Environ Med. 2020; 27(2): 184–93. https://dx.doi.org/10.26444/aaem/112331. 3. Biondi B., Cappola A.R., Cooper D.S. Subclinical hypothyroidism: A review. JAMA. 2019; 322(2): 153–60.https://dx.doi.org/10.1001/jama.2019.9052. 4. Feldt-Rasmussen U. Hashimoto’s thyroiditis as a risk factor for thyroid cancer. Curr Opin Endocrinol Diabetes Obes. 2020; 27(5): 364–71. https://dx.doi.org/10.1097/MED.0000000000000570. 5. Wu J., Huang H., Yu X. How does Hashimoto’s thyroiditis affect bone metabolism? Rev Endocr Metab Disord. 2023; 24(2): 191–205. https://dx.doi.org/10.1007/s11154-022-09778-x. 6. Lu Q., Luo X., Mao C. et al. Caveolin-1 regulates autophagy activity in thyroid follicular cells and is involved in Hashimoto’s thyroiditis disease. Endocr J. 2018; 65(9): 893–901. https://dx.doi.org/10.1507/endocrj.EJ18-0003. 7. Lee S.A., Stetten N.E., Anton S.D. Patient perspectives on the treatment for Hashimoto’s thyroiditis: A qualitative analysis. Health Prim Car. 2018; 2(4): 1–5. https://dx.doi.org/10.15761/HPC.1000141. 8. Kumar H., Choi D.K. Hypoxia inducible factor pathway and physiological adaptation: A cell survival pathway? Mediators Inflamm. 2015; 2015: 584758. https://dx.doi.org/10.1155/2015/584758. 9. Chen P.S, Chiu W.T., Hsu P.L. et al. Pathophysiological implications of hypoxia in human diseases. J Biomed Sci. 2020; 27(1): 63. https://dx.doi.org/10.1186/s12929-020-00658-7. 10. Gangwar A., Paul S., Ahmad Y., Bhargava K. Intermittent hypoxia modulates redox homeostasis, lipid metabolism associated inflammatory processes and redox post-translational modifications: Benefits at high altitude. Sci Rep. 2020; 10(1): 7899.https://dx.doi.org/10.1038/s41598-020-64848-x. 11. Игнатенко Г.А. Дубовая А.В., Науменко Ю.В. Возможности применения нормобарической гипокситерапии в терапевтической и педиатрической практиках. Российский вестник перинатологии и педиатрии. 2022; 67(6): 46–53. [Ignatenko G.A., Dubovaya A.V., Naumenko Yu.V. Treatment potential of normobaric hypoxic therapy in therapeutic and pediatric practice. Rossiyskiy vestnik perinatologii i pediatrii = Russian Bulletin of Perinatology and Pediatrics. 2022; 67(6): 46–53 (In Russ.)].https://dx.doi.org/10.21508/1027-4065-2022-67-6-46-53. EDN: PWABPR. 12. Игнатенко Г.А., Майлян Э.А., Игнатенко Т.С., Капанадзе Г.Д. Влияние гипокситерапии на содержание аутоантител к антигенам щитовидной железы у женщин с аутоиммунным тиреоидитом. Медико-социальные проблемы семьи. 2022; 27(3): 46–51. [Ignatenko G.A., Maylyan E.A., Ignatenko T.S., Kapanadze G.D. The influence of hypoxitherapy on the content of autoantibodies to thyroid antigens in women with autoimmune thyroiditis. Mediko-sotsial’nyye problemy sem’i = Medical and Social Problems of Family. 2022; 27(3): 46–51 (In Russ.)]. EDN: YGASKQ. 13. Игнатенко Г.А., Денисова Е.М., Сергиенко Н.В. Гипокситерапия как перспективный метод повышения эффективности комплексного лечения коморбидной патологии. Вестник неотложной и восстановительной хирургии. 2021; 6(4): 73–80. [Ignatenko G.A., Denisova E.M., Sergienko N.V. Hypoxytherapy as a prospective method of increasing the effectiveness of complex treatment of comorbid pathology. Vestnik neotlozhnoy i vosstanovitel’noy khirurgii = Bulletin of Urgent and Recovery Surgery. 2021; 6(4): 73–80 (In Russ.)]. EDN: SMZZQM. 14. Kayser B., Verges S. Hypoxia, energy balance and obesity: From pathophysiological mechanisms to new treatment strategies. Obes Rev. 2013; 14(7): 579–92. https://dx.doi.org/10.1111/obr.12034. 15. Camacho-Cardenosa M., Camacho-Cardenosa A., Timon R. et al. Can hypoxic conditioning improve bone metabolism? A systematic review. Int J Environ Res Public Health. 2019; 16(10): 1799. https://dx.doi.org/10.3390/ijerph16101799. 16. Musutova M., Weiszenstein M., Koc M., Polak J. Intermittent hypoxia stimulates lipolysis, but inhibits differentiation and de novo lipogenesis in 3T3-L1 cells. Metab Syndr Relat Disord. 2020; 18(3): 146–53. https://dx.doi.org/10.1089/met.2019.0112. 17. Park H.Y., Jung W.S., Kim J. et al. Changes in the paradigm of traditional exercise in obesity therapy and application of a new exercise modality: A narrative review article. Iran J Public Health. 2019; 48(8): 1395–404. 18. Radziejowska M. Efficiency of adaptation to hypoxic hypoxia in a course of artificial climatetherapy in correction of the hormonal status at thyroid gland hypofunction at children. Journal of Education, Health and Sport. 2018; 8(10): 347–56.https://dx.doi.org/10.5281/zenodo.1501808 19. Абазова З.Х., Борукаева И.Х. Гипокситерапия в коррекции нейроиммуноэндокринных нарушений при аутоиммунном тиреоидите. Медицинский академический журнал. 2019; 19(S): 49–51. [Abazova Z.Kh., Borukaeva I.Kh. Hypoxic therapy in the correction of neuroimmunoendocrine disorders in autoimmune thyroiditis. Meditsinskiy akademicheskiy zhurnal = Medical Academic Journal. 2019; 19(S): 49–51 (In Russ.)]. https://dx.doi.org/10.17816/MAJ191S149-51. EDN: VWTIJM. 20. Ruggeri R.M., Saitta S., Cristani M. et al. Serum interleukin-23 (IL-23) is increased in Hashimoto’s thyroiditis. Endocr J. 2014; 61(4): 359–63. https://dx.doi.org/10.1507/endocrj.ej13-0484. 21. Abbasalizad Farhangi M., Tajmiri S. The correlation between inflammatory and metabolic parameters with thyroid function in patients with Hashimoto’s thyroiditis: The potential role of interleukin 23 (IL-23) and vascular endothelial growth factor (VEGF)-1. Acta Endocrinol (Buchar). 2018; 14(2): 163–68. https://dx.doi.org/10.4183/aeb.2018.163. 22. Yang C., Zhong Z.F., Wang S.P. et al. HIF-1: Structure, biology and natural modulators. Chin J Nat Med. 2021; 19(7): 521–27.https://dx.doi.org/10.1016/S1875-5364(21)60051-1. 23. Gao L., Chen Q., Zhou X., Fan L. The role of hypoxia-inducible factor 1 in atherosclerosis. J Clin Pathol. 2012; 65(10): 872–76.https://dx.doi.org/10.1136/jclinpath-2012-200828. 24. Semenza G.L. Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol. 2014; 76: 39–56.https://dx.doi.org/10.1146/annurev-physiol-021113-170322. 25. McGettrick A.F., O’Neill L.A.J. The Role of HIF in Immunity and Inflammation. Cell Metab. 2020; 32(4): 524–36.https://dx.doi.org/10.1016/j.cmet.2020.08.002. 26. Fluck K., Breves G., Fandrey J., Winning S. Hypoxia-inducible factor 1 in dendritic cells is crucial for the activation of protective regulatory T cells in murine colitis. Mucosal Immunol. 2016; 9(2): 379–90. https://dx.doi.org/10.1038/mi.2015.67.
Grigory A. Ignatenko, MD, professor, corresponding member of National Academy of Medical Sciences of Ukraine, head of the Department of propaedeutics of internal diseases, M. Gorky Donetsk State Medical University. Address: 283003, DPR, Donetsk, 16 Ilyicha Avenue.
E-mail: prop-vnutr-medicina@dnmu.ru
ORCID: https://orcid.org/0000-0003-3611-1186
Eduard A. Maylyan, MD, professor, head of the Department of microbiology, virology, immunology and allergology, M. Gorky Donetsk State Medical University. Address: 283003, DPR, Donetsk, 16 Ilyicha Avenue.
E-mail: eduardmailyan095@gmail.com
ORCID: http://orcid.org/0000-0003-2845-7750
Tatyana S. Ignatenko, MD, professor, professor of the Department of propaedeutics of internal diseases, M. Gorky Donetsk State Medical University. Address: 283003, DPR, Donetsk, 16 Ilyicha Avenue.
E-mail: prop-vnutr-medicina@dnmu.ru
ORCID: https://orcid.org/0009-0001-2138-2277
Denis A. Lesnichenko, PhD in Medical Sciences, associate professor, associate professor of the Department of microbiology, virology, immunology and allergology, M. Gorky Donetsk State Medical University. Address: 283003, DPR, Donetsk, 16 Ilyicha Avenue.
E-mail:lesnichenko.da@yandex.com
ORCID: https://orcid.org/0000-0003-4465-261X
Yanina S. Valigun, assistant at the Department of transplantology and clinical laboratory diagnostics, M. Gorky Donetsk State Medical University. Address: 283003, DPR, Donetsk, 16 Ilyicha Avenue.
E-mail:valigun.kdl@mail.ru
ORCID: https://orcid.org/0009-0009-4364-1995
Svetlana V. Tumanova, PhD in Medical Sciences, associate professor, associate professor of the Department of internal medicine No. 2, M. Gorky Donetsk State Medical University. Address: 283003, DPR, Donetsk, 16 Ilyicha Avenue.
E-mail: sv.tumanova@mail.ru
ORCID: https://orcid.org/0009-0006-5316-9813