Cardiac manifestations of undifferentiated connective tissue dysplasia: The role of genetics, molecules fibrosis and inflammation


DOI: https://dx.doi.org/10.18565/therapy.2023.10.114-122

Khlynova O.V., Karpunina N.S., Soloviev O.V., Gordiychuk R.N., Shumovich I.V.

1) Academician E.A. Wagner Perm State Medical University of the Ministry of Healthcare of Russia; 2) Kirov State Medical University of the Ministry of Healthcare of Russia; 3) S.G. Sukhanov Federal Center for Cardiovascular Surgery of the Ministry of Healthcare of Russia, Perm
Аbstract. A review of the literature on the role of serum markers of fibrosis and myocardial inflammation in patients with mesenchymal dysplasia in arrhythmogenesis is presented. It has been proven that collagen accumulation occurs in the heart muscle of this cohort of patients, that type I, an increase in the serum content of terminal propeptides of procollagen type I, proteolytic activity of matrix metalloproteinase-9 over a tissue inhibitor of matrix metalloproteinases-1, hyperexpression of profibrotic microRNAs above the level of antifibrotic microRNAs, an increase in serum parameters of proinflammatory cytokines. It is associated with progression of connective tissue and electrophysiological remodeling of the myocardium.

Literature


1. Мартынов А.И., Нечаева Г.И., Акатова Е.В. с соавт. Клинические рекомендации российского научного медицинского общества терапевтов по диагностике, лечению и реабилитации пациентов с дисплазиями соединительной ткани (первый пересмотр). Медицинский вестник Северного Кавказа. 2018; 13 (1–2): 137–209. [Martynov A.I., Nechaeva G.I., Akatova E.V. et al. Clinical recommendations of the Russian Scientific Medical Society of Therapists on the diagnosis, treatment and rehabilitation of patients with connective tissue dysplasia (first revision). Meditsinskiy vestnik Severnogo Kavkaza = Medical News of the North Caucasus. 2018; 13 (1–2): 137–209 (In Russ.)]. https://dx.doi.org/10.14300/mnnc.2018.13037. EDN: OTKGIR.


2. Николаева Е.А., Семячкина А.Н. Генно-фенотипическая характеристика синдрома Элерса–Данло, трудности идентификации типов заболевания и подходы к патогенетическому лечению. Российский вестник перинатологии и педиатрии. 2021; 66(1): 22–30. [Nikolaeva E.A., Semyachkina A.N. Difficulties of disease type identification and approaches to pathogenetic treatment. Rossiyskiy vestnik perinatologii i pediatrii = Russian Bulletin of Perinatology and Pediatrics. 2021; 66(1): 22–30 (In Russ.)].https://dx.doi.org/10.21508/1027-4065-2021-66-1-22-30. EDN: JKCBHM.


3. Kirk J.A., Ansell B.M., Bywaters E.G. The hypermobility syndrome. Musculoskeletal complaints associated with generalized joint hypermobility. Ann Rheum Dis. 1967; 26(5): 419–25. https://dx.doi.org/10.1136/ard.26.5.419.


4. Кадурина Т.И., Горбунова В.Н. Современные представления о дисплазии соединительной ткани. Казанский медицинский журнал. 2007; 88(5-S): 2–5. [Kadurina T.I., Gorbunova V.N. Modern ideas about connective tissue dysplasia. Kazanskiy meditsinskiy zhurnal = Kazan Medical Journal. 2007; 88(5-S): 2–5 (In Russ.)]. EDN: ULFLQV.


5. Нечаева Г.И. Дисплазия соединительной ткани: терминология, диагностика, тактика ведения больного. Омск: Издательство «Типография Бланком». 2007; 188 с. [Connective tissue dysplasia: Terminology, diagnosis, tactics of patient management. Omsk: Typography Blankom publishing house. 2007; 188 pp. (In Russ.)].


6. Друк И.В., Нечаева Г.И., Осеева О.В. с соавт. Персонифицированная оценка риска развития неблагоприятных сердечно-сосудистых проявлений у пациентов молодого возраста с дисплазией соединительной ткани. Кардиология. 2015; 55(3): 75–84. [Druk I.V., Nechaeva G.I., Oseeva O.V. et al. Personalized risk assessment of adverse cardiovascular events in young patients with connective tissue dysplasia. Kardiologiya = Cardiology. 2015; 55(3): 75–84 (In Russ.)]. EDN: TPIORL.


7. Corrado D., Basso C., Nava A. et al. Sudden death in young people with apparently isolated mitral valve prolapse. G Ital Cardiol. 1997; 27(11) :1097–105.


8. Chugh S.S., Kelly K.L., Titus J.L. Sudden cardiac death with apparently normal heart. Circulation. 2000; 102(6): 649–54.https://dx.doi.org/10.1161/01.cir.102.6.649.


9. Шилова М.А. Внезапная сердечная смерть лиц молодого возраста: факторы риска, причины, морфологические эквивалент. Международный журнал сердца и сосудистых заболеваний. 2015; 3(6): 25–34. [Shilova M.A. Sudden cardiac death of young people: Risk factors, causes, morphological equivalents. Mezhdunarodnyy zhurnal serdtsa i sosudistykh zabolevaniy = International Journal of Heart and Vascular Diseases. 2015; 3(6): 25–34 (In Russ.)]. EDN: XXHYOD.


10. Арсентьева Р.Х. Синдром удлиненного интервала QT. Вестник современной клинической медицины. 2012; 5(3): 69–73. [Arsentieva R.H. Long QT syndrome. Vestnik sovremennoy klinicheskoy meditsiny = The Bulletin of Contemporary Clinical Medicine. 2012; 5(3): 69–73 (In Russ.)]. EDN: PCRGSL.


11. Нечаева Г.И., Яковлев В.М., Друк И.В., Тихонова О.В. Нарушения ритма сердца при недифференцированной дисплазии соединительной ткани. Лечащий врач. 2008; (6): 43. [Nechayeva G.I., Yakovlev V.M., Druk I.V., Tikhonova O.V. Cardiac arrhythmias in undifferentiated connective tissue dysplasia. Lechaschiy vrach = Attending Physician. 2008; (6): 43 (In Russ.)]. EDN: TGLETP.


12. Мухиддинов Б.И., Абдуллаев Т.А. Нарушения ритма и проводимости при пролапсе митрального клапана I степени у лиц молодого возраста. Евразийский кардиологический журнал. 2015; 1: 29-33.[Mukhiddinov B.I., Abdullaev T.A. Rhythm and conduction disorders in grade I mitral valve prolapse in young people. Eurasian Journal of Cardiology. 2015; 1: 29-33].


13. Verhthule S., Schotten U. Electrophysiological consequences of cardiac fibrosis. Cells. 2021; 10(11): 3220.https://dx.doi.org/10.3390/cells10113220.


14. Maione A.S., Stadiotti I., Pilato C.A. et al. Excess TGF-β1 drives cardiac mesenchymal stromal cells to a pro-fibrotic commitment in arrhythmogenic cardiomyopathy. Int J Mol Sci. 2021; 22(5): 2673. https://dx.doi.org/10.3390/ijms22052673.


15. Travers J.G., Kamal F.A., Robbins J. et al. Cardiac fibrosis: The fibroblast awakens. Circ Res. 2016; 118(6): 1021–40.https://dx.doi.org/10.1161/CIRCRESAHA.115.306565.


16. Li G., Yang J., Zhang D. et al. Research progress of myocardial fibrosis and atrial fibrillation. Front Cardiovasc Med. 2022; 9: 889706. https://dx.doi.org/10.3389/fcvm.2022.889706.


17. Ravassa S., Ballesteros G., Lopez B. et al. Combination of circulating type I collagen-related biomarkers is associated with atrial fibrillation. J Am Coll Cardiol. 2019; 73 (12): 1398–410. https://dx.doi.org/10.1016 /j.jacc.2018.12.074.


18. Lopez B., Gonzalez A., Ravasa S. et al. Circulating biomarkers of myocardial fibrosis: The need for reassessment. J Am Coll Cardiol. 2015; 65(22): 2449–56. https://dx.doi.org/10.1016/j.jacq.2015.04.026.


19. Li C.Y., Zhang J.R., Hu W.N., Li S.N. Atrial fibrosis underlying atrial fibrillation (Review). Int J Mol Med. 2021; 47(3): 9.https://dx.doi.org/10.3892/ijmm.2020.4842.


20. Liu H., Fan P., Jin F. et al. Dynamic and static biomechanical traits of cardiac fibrosis. Front Bioeng Biotechnol. 2022; 10: 1042030. https://dx.doi.org/10.3389/fbioe.2022.1042030.


21. Saadat S., Noureddini M., Mahjoubin-Tehran M. et al. Pivotal role of TGF-β/Smad signaling in cardiac fibrosis: Non-coding RNAs as effectual players. Front Cardiovasc Med. 2021; 7: 588347. https://dx.doi.org/10.3389/fcvm.2020.588347.


22. Wynn T.A. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008; 214(2): 199–210. https://dx.doi.org/10.1002/path.2277.


23. Sygitowicz G., Maciejak-Jastrzebska A., Sitkiewicz D. A Review of the molecular mechanisms underlying cardiac fibrosis and atrial fibrillation. J Clin Med. 2021; 10(19): 4430. https://dx.doi.org/10.3390/jcm10194430.


24. Koshman Y.E., Patel N., Chu M. et al. Regulation of connective tissue growth factor gene expression and fibrosis in human heart failure. J Card Fail. 2013; 19(4): 283–94. https://dx.doi.org/10.1016/j.cardfail.2013.01.013.


25. Tuuminen R., Nykanen A.I., Krebs R. et al. PDGF-A, -C, and -D but not PDGF-B increase TGF-beta1 and chronic rejection in rat cardiac allografts. Arterioscler Thromb Vasc Biol. 2009; 29(5): 691–98. https://dx.doi.org/10.1161/ATVBAHA.108.178558.


26. Zhao T., Zhao W., Chen Y. et al. Platelet-derived growth factor-D promotes fibrogenesis of cardiac fibroblasts. Am J Physiol Heart Circ Physiol. 2013; 304(12): H1719–26. https://dx.doi.org/10.1152/ajpheart.00130.2013.


27. Condorelli G., Latronico M.V., Cavarretta E. microRNAs in cardiovascular diseases: Current knowledge and the road ahead. J Am Coll Cardiol. 2014; 63(21): 2177–87. https://dx.doi.org/10.1016/j.jacc.2014.01.050.


28. Bronze-da-Rocha E. MicroRNAs expression profiles in cardiovascular diseases. Biomed Res Int. 2014; 2014: 985408.https://dx.doi.org/10.1155/2014/985408.


29. Robinson S., Follo M., Haenel D. et al. Droplet digital PCR as a novel detection method for quantifying microRNAs in acute myocardial infarction. Int J Cardiol. 2018; 257: 247–54. https://dx.doi.org/10.1016/j.ijcard.2017.10.111.


30. Zhou X.L., Xu H., Liu Z.B. et al. miR-21 promotes cardiac fibroblast-to-myofibroblast transformation and myocardial fibrosis by targeting Jagged1. J Cell Mol Med. 2018; 22(8): 3816–24. https://dx.doi.org/10.1111/jcmm.13654.


31. Sygitowicz G., Tomaniak M., Blaszczyk O. et al. Circulating microribonucleic acids miR-1, miR-21 and miR-208a in patients with symptomatic heart failure: Preliminary results. Arch Cardiovasc Dis. 2015; 108(12): 634–42.https://dx.doi.org/10.1016/j.acvd.2015.07.003.


32. Dawson K., Wakili R., Ordog B. et al. MicroRNA29: A mechanistic contributor and potential biomarker in atrial fibrillation. Circulation. 2013; 127(14): 1466–75, 1475e1–28. https://dx.doi.org/10.1161/CIRCULATIONAHA.112.001207.


33. Chase A.J., Newby A.K. Regulation of matrix metalloproteinase (matrix) genes in blood vessels: A multi-stage attraction model for pathological remodeling. J Vasc Res. 2003; 40 (4): 329–43. https://dx.doi.org/10.1159/000072697.


34. Visse R., Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function and biochemistry. Circ Res. 2003; 92(8): 827–39. https://dx.doi.org/10.1161/01.RES.0000070112.80711.3D.


35. Fagarasan A., Sasaran M.O. The predictive role of plasma biomarkers in the evolution of aortopathies associated with congenital heart malformations. Int J Mol Sci. 2022; 23(9): 4993. https://dx.doi.org/10.3390/ijms23094993.


36. Гончарова Н.С., Моисеева Г.Н., Алешина Г.М., Шляхто Е.В. Типы гипертрофии миокарда левого желудочка и система матриксных металлопротеиназ у пациентов с клапанными пороками. Артериальная гипертензия. 2007; 13(4): 287–291. [Goncharova N.S., Moiseeva G.N., Aleshina G.M., Shlyahto E.V. Types of left ventricular myocardial hypertrophy and matrix metalloproteinase system in patients with valvular defects. Arterial'naya gipertenziya = Arterial Hypertension. 2007; 13(4): 287–291 (In Russ.)]. EDN: MUFCAZ.


37. Пальцева Е.М., Полякова В.О., Осколкова С.А. с соавт. Экспрессия матриксных металлопротеиназ и их ингибиторов в стенке внутренней сонной артерии при патологической извитости. Архив патологии. 2016; 78(3): 26–31. [Paltseva E.M., Polyakova V.O., Oskolkova S.A. et al. Expression of matrix metalloproteinases and their inhibitors in the wall of the internal carotid artery in pathological tortuosity. Arkhiv patologii = Archive of Pathology. 2016; 78(3): 26–31 (In Russ.)].https://dx.doi.org/10.17116/patol201678326-31. EDN: WAIULN.


38. Джазаева М.Б., Гладких Н.Н., Решетников В.А., Ягода А.В. Матриксные металлопротеиназы: значение в ремоделировании сердца у пациентов дисплазией соединительной ткани. Медицинский вестник Северного Кавказа. 2018; 13(4): 576–580. [Dzhazayeva M.B., Gladkikh N.N., Reshetnikov V.A., Yagoda A.V. Matrix metalloproteinases: Significance in heart remodeling in patients with connective tissue dysplasia. Meditsinskiy vestnik Severnogo Kavkaza = Medical News of the North Caucasus. 2018; 13(4): 576–580 (In Russ.)]. https://dx.doi.org/10.20514/2226-6704-2020-10-2-155-160. EDN: JMLLNI.


39. Туев А.В., Василец Л.М., Хлынова О.В. с соавт. Роль сывороточных маркеров синтеза и деградации коллагена, структурно-функциональных параметров сердца в прогнозировании фибрилляции предсердий у пациентов с синдромом преждевременного возбуждения желудочков. Пермский медицинский журнал. 2016; 33(1): 28–34. [Tuev A.V., Vasilets L.M., Khlynova O.V. et al. The role of serum markers of collagen synthesis and degradation, structural and functional parameters of the heart in predicting atrial fibrillation in patients with premature ventricular arousal syndrome. Permskiy meditsinskiy zhurnal = Perm Medical Journal. 2016; 33(1): 28–34 (In Russ.)]. https://dx.doi.org/10.17816/pmj33128-34. EDN: VOALML.


40. Rafaqat S., Sharif S., Majeed M. et al. Biomarkers of metabolic syndrome: Role in pathogenesis and pathophysiology of atrial fibrillation. J Atr Fibrillation. 2021; 14(2): 20200495. https://dx.doi.org/10.4022/jafib.20200495.


41. Ren M., Li X., Hao L., Zhong J. Role of tumor necrosis factor alpha in the pathogenesis of atrial fibrillation: A novel potential therapeutic target? Ann Med. 2015; 47(4): 316–24. https://dx.doi.org/10.3109/07853890.2015.1042030.


About the Autors


Olga V. Khlynova, MD, professor, corresponding member of RAS, head of the Department of hospital therapy and cardiology, Academician E.A. Wagner Perm State Medical University of the Ministry of Healthcare of Russia. Address: 614990, Perm, 26 Petropavlovskaya St.
E-mail: olgakhlynova@mail.ru
ORCID: https://orcid.org/00000003-4860-0112
Natalya S. Karpunina, MD, professor of the Department of hospital therapy and cardiology, Academician E.A. Wagner Perm State Medical University of the Ministry of Healthcare of Russia. Address: 614990, Perm, 26 Petropavlovskaya St.
E-mail: karpuninapsma@mail.ru
ORCID: https://orcid.org/0000-0003-3127-1797
Oleg V. Soloviev, MD, professor, head of the Department of faculty therapy, ФГБОУ ВО Kirov State Medical University of the Ministry of Healthcare of Russia. Address: 610998, Kirov, 112 K. Marksa St.
E-mail: kft@mail.ru
ORCID: https://orcid.org/0000-0002-2590-9283
Rimma N. Gordiychuk, cardiovascular surgeon at S.G. Sukhanov Federal Center for Cardiovascular Surgery of the Ministry of Healthcare of Russia. Address: 614013, Perm, 35 Marshala Zhukova St.
E-mail: gorrn81@mail.ru
ORCID: https://orcid.org/0000-0003-0090-1944
Irina V. Shumovich, cardiologist at S.G. Sukhanov Federal Center for Cardiovascular Surgery of the Ministry of Healthcare of Russia. Address: 614013, Perm, 35 Marshala Zhukova St.
E-mail: diserta@mail.ru
ORCID: https://orcid.org/0000-0002-6770-0007


Similar Articles


Бионика Медиа