Новые возможности лечения пациентов с ХСН: фокус на дапаглифлозин


DOI: https://dx.doi.org/10.18565/therapy.2023.4.145-152

В.В. Малимон, В.А. Кокорин

ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России, г. Москва
Аннотация. Хроническая сердечная недостаточность (ХСН) по-прежнему занимает ведущие позиции в структуре госпитализаций и смертности пациентов. Изучение подходов к лечению этого заболевания остается актуальной проблемой в спектре внимания медицинского сообщества. Ингибиторы натрий-глюкозного котранспортера 2-го типа (иНГЛТ-2), разработанные исходно для лечения сахарного диабета 2-го типа, в последние годы являются одним из самых исследуемых классов препаратов, доказавших свою эффективность в терапии ХСН. В предлагаемой статье изложены изученные фармакологические механизмы действия иНГЛТ-2, представлен разбор клинических исследований по применению этого класса лекарственных средств у пациентов с ХСН. Основное внимание уделено анализу исследования DELIVER, результаты которого продемонстрировали эффективность дапаглифлозина в лечении больных сердечной недостаточностью с умеренно сниженной и сохраненной фракцией выброса левого желудочка.

Литература


1. Savarese G., Lund L.H. Global Public Health Burden of Heart Failure. Card Fail Rev. 2017; 3(1): 7–11. https://dx.doi.org/10.15420/cfr.2016:25:2.


2. Коваленко Е.В., Ложкина М.В., Арабидзе Г.Г., Крякушкин В.Г. Эффективность ингибиторов натрий-глюкозного ко-транспортера 2 типа у больных с хронической сердечной недостаточностью. Российский кардиологический журнал. 2021; 26(1): 158–165.


3. Беленков Ю.Н., Мареев В.Ю., Агеев Ф.Т. и др. Истинная распространенность ХСН в европейской части Российской Федерации (исследование ЭПОХА, госпитальный этап). Журнал Сердечная Недостаточность. 2011; 12(2): 63–68.


4. Мареев В.Ю., Фомин И.В., Агеев Ф.Т. с соавт. Клинические рекомендации ОССН–РКО–РНМОТ. Сердечная недостаточность: хроническая (ХСН) и острая декомпенсированная (ОДСН). Диагностика, профилактика и лечение. Кардиология. 2018; 58(S6): 8–158.


5. Мареев В.Ю., Беленков Ю.Н. Хроническая сердечная недостаточность и инсулиннезависимый сахарный диабет: случайная связь или закономерность. Терапевтический архив. 2003; 75(10): 1–10.


6. Хасанов Н.Р. Эффекты применения ингибитора натрий-глюкозного котранспортера 2 типа дапаглифлозина у пациентов с сердечной недостаточностью с низкой фракцией выброса левого желудочка. Российский кардиологический журнал. 2020; 25(8): 83–90.


7. Zinman B., Wanner C., Lachin J.M., et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015; 373(22): 2117–28. https://dx.doi.org/10.1056/NEJMoa1504720.


8. Neal B., Perkovic V., Mahaffey K.W. et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017; 377(21): 644–57. https://dx.doi.org/ 10.1056/NEJMoa1611925.


9. Wiviott S.D., Raz I., Bonaca M.P., et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019; 380(4): 347–57. https://dx.doi.org/10.1056/NEJMoa1812389.


10. Packer M. SGLT2 inhibitors produce cardiorenal benefits by promoting adaptive cellular reprogramming to induce a state of fasting mimicry: A paradigm shift in understanding their mechanism of action. Diabetes Care. 2020; 43(3): 508–11. https://dx.doi.org/10.2337/dci19-0074.


11. Kalra S., Jain A., Ved J., Unnikrishnan A.G. Sodium glucose cotransporter 2 inhibition and health benefits: The Robin Hood effect. Indian J Endocrinol Metab. 2016; 20(5): 725–29. https://dx.doi.org/10.4103/22308210.183826.


12. Verma S., McMurray J.J.V., Cherney D.Z.I. The metabolodiuretic promise of sodium- dependent glucose cotransporter 2 inhibition: the search for the sweet spot in heart failure. JAMA Cardiol. 2017; 2(9): 939–40. https://dx.doi.org/10.1001/jamacardio.2017.1891.


13. Sattar N., McLaren J., Kristensen S.L. et al. SGLT2 inhibition and cardiovascular events: why did EMPA-REG Outcomes surprise and what were the likely mechanisms? Diabetologia. 2016; 59(7): 1333–39. https://dx.doi.org/10.1007/s00125-016-3956-x.


14. Brown A.J.M., Lang C., McCrimmon R., Struthers A. Does dapagliflozin regress left ventricular hypertrophy in patients with type 2 diabetes? A prospective, double-blind, randomised, placebo-controlled study. BMC Cardiovasc Disord. 2017; 17(1): 229. https://dx.doi.org/10.1186/s12872-017-0663-6.


15. Natali A., Nesti L., Fabiani I. et al. Impact of empagliflozin on subclinical left ventricular dysfunctions and on the mechanisms involved in myocardial disease progression in type 2 diabetes: rationale and design of the EMPA-HEART trial. Cardiovasc Diabetol. 2017; 16(1): 130. https://dx.doi.org/10.1186/s12933-017-0615-6.


16. Singh J.S., Fathi A., Vickneson K. et al. Research into the effect of SGLT2 inhibition on left ventricular remodelling in patients with heart failure and diabetes mellitus (REFORM) trial rationale and design. Cardiovasc Diabetol. 2016; 15: 97. https://dx.doi.org/10.1186/s12933-016-0419-0.


17. Verma S., Mazer C.D., Yan A.T. et al. EMPA-HEART Cardiolink-6 trial: A randomized trial evaluating the effect of empagliflozin on left ventricular structure, function and biomarkers in people with type 2 diabetes (T2D) and coronary heart disease. Сirculation. 2018; 138(25): A19332. https://dx.doi.org/10.1161/CIRCULATIONAHA.119.042375.


18. Brown A.J.M., Gandy S., McCrimmon R. et al. A randomized controlled trial of dapagliflozin on left ventricular hypertrophy in people with type two diabetes: The DAPA-LVH trial. Eur Heart J. 2020; 41(36): 3421–32. https://dx.doi.org/10.1093/eurheartj/ehaa419.


19. Fedak P.W., Verma S., Weisel R.D., Li R.K. Cardiac remodeling and failure from molecules to man (part II). Cardiovasc Pathol. 2006; 14(2): 49–60. https://dx.doi.org/10.1016/j.carpath.2005.01.005.


20. Lee T.M., Chang N.C., Lin S.Z. Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017; 104: 298–310.https://dx.doi.org/10.1016/j.freeradbiomed.2017.01.035.


21. Patel V.B., Shah S., Verma S., Oudit G.Y. Epicardial adipose tissue as a metabolic transducer: role in heart failure and coronary artery disease. Heart Fail Rev. 2017; 22(6): 889–902. https://dx.doi.org/10.1007/s10741-017-9644-1.


22. Sato T., Aizawa Y., Yuasa S. et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol. 2018; 17(1): 6. https://dx.doi.org/10.1186/s12933-017-0658-8.


23. Verma S., McMurray J.J.V. SGLT2 inhibitors and mechanisms of cardiovascular benefit: A state-of-the-art review. Diabetologia. 2018; 61(10): 2108–17. https://dx.doi.org/10.1007/s00125-018-4670-7.


24. Bers D.M. Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annu Rev Physiol. 2014; 76: 107–27. https://dx.doi.org/10.1146/annurev-physiol-020911-153308.


25. Packer M., Anker S.D., Butler J., et al. Effects of sodium-glucose cotransporter 2 inhibitors for the treatment of patients with heart failure: proposal of a novel mechanism of action. JAMA Cardiol. 2017; 2(9): 1025–29. https://dx.doi.org/10.1001/jamacardio.2017.2275.


26. Uthman L., Baartscheer A., Bleijlevens B. et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia. 2018; 61(3): 722–26.https://dx.doi.org/10.1007/s00125-017-4509-7.


27. Baartscheer A., Schumacher C.A., Wust R.C. et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia. 2017; 60(3): 568–73. https://dx.doi.org/10.1007/s00125-016-4134-x.


28. Liu T., Takimoto E., Dimaano V.L. et al. Inhibiting mitochondrial Na+/Ca2+ exchange prevents sudden death in a guinea pig model of heart failure. Circ Res. 2014; 115(1): 44–54. https://dx.doi.org/10.1161/CIRCRESAHA.115.303062.


29. Gallo L.A., Wright E.M., Vallon V. Probing SGLT2 as a therapeutic target for diabetes: Basic physiology and consequences. Diab Vasc Dis Res. 2015; 12(2): 78–89. https://dx.doi.org/10.1177/1479164114561992.


30. Lopaschuk G.D., Ussher J.R., Folmes C.D. et al. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010; 90(1): 207–58. https://dx.doi.org/10.1152/physrev.00015.2009.


31. Ferrannini E., Mark M., Mayoux E. CV protection in the EMPA-REG OUTCOME trial: a “thrifty substrate” hypothesis. Diabetes Care. 2016; 39: 1108–14. https://dx.doi.org/ 10.2337/dc16-0330.


32. Mizuno Y., Harada E., Nakagawa H. et al. The diabetic heart utilizes ketone bodies as an energy source. Metabolism. 2017; 77: 65–72. https://dx.doi.org/10.1016/j.metabol.2017.08.005.


33. Gormsen L.C., Svart M., Thomsen H.H. et al. Ketone body infusion with 3-hydroxybutyrate reduces myocardial glucose uptake and increases blood flow in humans: A positron emission tomography study. J Am Heart Assoc. 2017; 6(3): e005066.https://dx.doi.org/10.1161/JAHA.116.005066.


34. Stowe K.A., Burgess S.C., Merritt M. et al. Storage and oxidation of long-chain fatty acids in the C57/BL6 mouse heart as measured by NMR spectroscopy. FEBS Lett. 2006; 580(17): 4282–87. https://dx.doi.org/10.1016/j.febslet.2006.06.068.


35. Cannon C.P., Pratley R., Dagogo-Jack S. et al. Cardiovascular outcomes with ertugliflozin in type 2 diabetes. N Engl J Med. 2020; 383(15): 1425–35. https://dx.doi.org/10.1056/NEJMoa2004967.


36. McMurray J.J.V., Solomon S.D., Inzucchi S.E. et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019; 381(21): 1995–2008. https://dx.doi.org/10.1056/NEJMoa1911303.


37. Шулькина С.Г., Кокорин В.А. Новые перспективы и реальные возможности в терапии больных с сердечной недостаточностью. Терапия. 2021; 7(6): 91–97.


38. McDonagh T.A., Metra M., Adamo M. et al.; ESC Scientific Document Group. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J. 2021; 42(36): 3599–726. https://dx.doi.org/10.1093/eurheartj/ehab368.


39. Терещенко С.Н., Галявич А.С., Ускач Т.М. с соавт. Хроническая сердечная недостаточность. Клинические рекомендации 2020. Российский кардиологический журнал. 2020; 25(11): 311–374.


40. Heidenreich P.A., Bozkurt B., Aguilar D. et al. 2022 AHA/ACC/HFSA guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation. 2022; 145(18): e895–e1032. https://dx.doi.org/10.1161/CIR.0000000000001063.


41. Packer M., Anker S.D., Butler J., et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020; 383(15): 1413–24. https://dx.doi.org/ 10.1056/NEJMoa2022190.


42. Bhatt D.L., Szarek M., Steg P.G. et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2021; 384(2): 117–28. https://dx.doi.org/10.1056/NEJMoa2030183.


43. Anker S.D., Butler J., Filippatos G. et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021; 385(16): 1451–61. https://dx.doi.org/10.1056/NEJMoa2107038.


44. Solomon S.D., McMurray J.J.V., Claggett B. et al.; DELIVER Trial Committees and Investigators. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2022; 387(12): 1089–98. https://dx.doi.org/10.1056/NEJMoa2206286.


45. Cunningham J.W., Vaduganathan M., Claggett B.L. et al. Dapagliflozin in patients recently hospitalized with heart failure and mildly reduced or preserved ejection fraction. J Am Coll Cardiol. 2022; 80(14): 1302–10. https://dx.doi.org/10.1016/j.jacc.2022.07.021.


46. Heerspink H.J.L., Stefansson B.V., Correa-Rotter R. et al. Dapagliflozin in patients with chronic kidney disease. N Engl J Med. 2020; 383(15): 1436–46. https://dx.doi.org/10.1056/NEJMoa2024816.


47. Voors A.A., Angermann C.E., Teerlink J.R. et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: A multinational randomized trial. Nat Med. 2022; 28(3): 568–74. https://dx.doi.org/0.1038/s41591-021-01659-1.


48. Bhatt A.S., Varshney A.S., Nekoui M. et al. Virtual optimization of guideline-directed medical therapy in hospitalized patients with heart failure with reduced ejection fraction: The IMPLEMENT-HF pilot study. Eur J Heart Fail. 2021; 23(7): 1191–201.https://dx.doi.org/10.1002/ejhf.2163.


49. Greene S.J., Butler J., Albert N.M. et al. Medical therapy for heart failure with reduced ejection fraction. J Am Coll Cardiol. 2018; 72(4): 351–66. https://dx.doi.org/10.1016/j.jacc.2018.04.070.


50. Gattis W.A., O’Connor C.M., Gallup D.S. et al. Predischarge initiation of carvedilol in patients hospitalized for decompensated heart failure: results of the initiation management predischarge: Process for assessment of carvedilol therapy in heart failure (IMPACT-HF) trial. J Am Coll Cardiol. 2004; 43(9): 1534–41. https://dx.doi.org/10.1016/j.jacc.2003.12.040.


Об авторах / Для корреспонденции


Валентин Витальевич Малимон, ассистент кафедры госпитальной терапии им. академика П.Е. Лукомского лечебного факультета ФГАОУ ВО «Российский национальный исследовательский медицинский университет
им. Н.И. Пирогова» Минздрава России. Адрес: 117997, Москва, ул. Островитянова, д. 1. E-mail: malimon.1993@mail.ru. ORCID: https://orcid.org/0009-0006-2808-0956
Валентин Александрович Кокорин, д.м.н., доцент, профессор кафедры госпитальной терапии им. академика П.Е. Лукомского лечебного факультета ФГАОУ ВО «Российский национальный исследовательский медицинский университет им. Н.И. Пирогова» Минздрава России. Адрес: 117997, Москва, ул. Островитянова, д. 1. E-mail: valentinkokorin@yahoo.com. ORCID: https://orcid.org/0000-0001-8614-6542


Похожие статьи


Бионика Медиа