DOI: https://dx.doi.org/10.18565/therapy.2023.7.168-175
Н.В. Бакулина, И.В. Савилова, Е.А. Лутаенко, Д.Б. Цурцумия
ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России, г. Санкт-Петербург
1. World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed. URL: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (date of access – 01.08.2023). 2. Зубов П.В., Новикова В.В. Разработка новых антибактериальных препаратов – проблемы и перспективы. Современные проблемы науки и образования. 2015; (5): 342. 3. Christoffersen R.E. Antibiotics – an investment worth making? Nat Biotechnol. 2006; 24(12): 1512–14. https://dx.doi.org/10.1038/nbt1206-1512. 4. Jampilek J., Kralova K. Advances in nanostructures for antimicrobial therapy. Materials (Basel). 2022; 15(7): 2388. https://dx.doi.org/10.3390/ma15072388. 5. Zhang L., Pornpattananangku D., Hu C.M., Huang C.M. Development of nanoparticles for antimicrobial drug delivery. Curr Med Chem. 2010; 17(6): 585–94. https://dx.doi.org/10.2174/092986710790416290. 6. Zhang Q., Wu W., Zhang J., Xia X. Eradication of Helicobacter pylori: The power of nanosized formulations. Nanomedicine (Lond). 2020; 15(5): 527–42. https://dx.doi.org/10.2217/nnm-2019-0329. 7. Lai S.K., Wang Y.Y., Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009; 61(2): 158–71. https://dx.doi.org/10.1016/j.addr.2008.11.002. 8. Li X., Yeh Y.C., Giri K. et al. Control of nanoparticle penetration into biofilms through surface design. Chem Commun (Camb). 2015; 51(2): 282–85. https://dx.doi.org/10.1039/c4cc07737g. 9. Lotfipour F., Valizadeh H., Milani M. et al. Study of antimicrobial effects of clarithromycin loaded PLGA nanoparticles against clinical strains of Helicobacter pylori. Drug Res (Stuttg). 2016; 66(1): 41–45. https://dx.doi.org/10.1055/s-0035-1548910. 10. Safarov T., Kiran B., Bagirova M. et al. An overview of nanotechnology-based treatment approaches against Helicobacter pylori. Expert Rev Anti Infect Ther. 2019; 17(10): 829–40. https://dx.doi.org/10.1080/14787210.2019.1677464 11. Lakshminarayanan R., Ye E., Young D.J. et al. Recent advances in the development of antimicrobial nanoparticles for combating resistant pathogens. Adv Healthc Mater. 2018; 7(13): e1701400. https://dx.doi.org/10.1002/adhm.201701400. 12. Rai M., Yadav A., Gade A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv. 2009; 27(1): 76–83. https://dx.doi.org/10.1016/j.biotechadv.2008.09.002. 13. Luo D., Guo J., Wang F. et al. Preparation and evaluation of anti-Helicobacter pylori efficacy of chitosan nanoparticles in vitro and in vivo. J Biomater Sci Polym Ed. 2009; 20(11): 1587–96. https://dx.doi.org/10.1163/092050609X12464345137685. 14. Bose R.J.C., Ravikumar R., Karuppagounder V. et al. Lipid-polymer hybrid nanoparticle-mediated therapeutics delivery: Advances and challenges. Drug Discov Today. 2017; 22(8): 1258–65. https://dx.doi.org/10.1016/j.drudis.2017.05.015. 15. Pornpattananangkul D., Zhang L., Olson S. et al. Bacterial toxin-triggered drug release from gold nanoparticle-stabilized liposomes for the treatment of bacterial infection. J Am Chem Soc. 2011; 133(11): 4132–39. https://dx.doi.org/10.1021/ja111110e. 16. Gao W., Fang R.H., Thamphiwatana S. et al. Modulating antibacterial immunity via bacterial membrane-coated nanoparticles. Nano Lett. 2015; 15(2): 1403–9. https://dx.doi.org/10.1021/nl504798g. 17. Hu C.M., Fang R.H., Wang K.C. et al. Nanoparticle biointerfacing by platelet membrane cloaking. Nature. 2015; 526(7571): 118–21. https://dx.doi.org/10.1038/nature15373. 18. Gao W., Zhang L. Engineering red-blood-cell-membrane – coated nanoparticles for broad biomedical applications. AIChE J. 2015; 61(3): 738–46. https://dx.doi.org/10.1002/aic.14735. 19. de Souza M.P.C., de Camargo B.A.F., Sposito L. et al. Highlighting the use of micro and nanoparticles based-drug delivery systems for the treatment of Helicobacter pylori infections. Crit Rev Microbiol. 2021; 47(4): 435–60. https://dx.doi.org/10.1080/1040841X.2021.1895721. 20. Горбик В.С., Шпрах З.С., Козлова Ж.М., Салова В.Г. Липосомы как система таргетной доставки лекарственных средств (обзор). Российский биотерапевтический журнал. 2021; 20(1): 33–41. 21. Lopes D., Nunes C., Martins M.C. et al. Eradication of Helicobacter pylori: Past, present and future. J Control Release. 2014; 189: 169–86. https://dx.doi.org/10.1016/j.jconrel.2014.06.020. 22. Blecher K., Nasir A., Friedman A. The growing role of nanotechnology in combating infectious disease. Virulence. 2011; 2(5): 395–401. https://dx.doi.org/10.4161/viru.2.5.17035. 23. Bardonnet P.L., Faivre V., Boullanger P. et al. Pre-formulation of liposomes against Helicobacter pylori: characterization and interaction with the bacteria. Eur J Pharm Biopharm. 2008; 69(3): 908–22. https://dx.doi.org/10.1016/j.ejpb.2008.01.018. 24. Singh D.Y., Prasad N.K. Double liposomes mediated dual drug targeting for treatment of Helicobacter pylori infections. Pharmazie. 2011; 66(5): 368–73. 25. Jain P., Jain S., Prasad K.N. et al. Polyelectrolyte coated multilayered liposomes (nanocapsules) for the treatment of Helicobacter pylori infection. Mol Pharm. 2009; 6(2): 593–603. https://dx.doi.org/10.1021/mp8002539. 26. Jung S.W., Thamphiwatana S., Zhang L., Obonyo M. Mechanism of antibacterial activity of liposomal linolenic acid against Helicobacter pylori. PLoS One. 2015; 10(3): e0116519. https://dx.doi.org/10.1371/journal.pone.0116519. 27. Pornpattananangkul D., Fu V., Thamphiwatana S. et al. In vivo treatment of Propionibacterium acnes infection with liposomal lauric acids. Adv Healthc Mater. 2013; 2(10): 1322–28. https://dx.doi.org/10.1002/adhm.201300002. 28. Obonyo M., Zhang L., Thamphiwatana S. et al. Antibacterial activities of liposomal linolenic acids against antibiotic-resistant Helicobacter pylori. Mol Pharm. 2012; 9(9): 2677–85. https://dx.doi.org/10.1021/mp300243w. 29. Thamphiwatana S., Gao W., Obonyo M., Zhang L. In vivo treatment of Helicobacter pylori infection with liposomal linolenic acid reduces colonization and ameliorates inflammation. Proc Natl Acad Sci U S A. 2014; 111(49): 17600–5. https://dx.doi.org/10.1073/pnas.1418230111. 30. Абаева Л.Ф., Шумский В.И., Петрицкая Е.Н. с соавт. Наночастицы и нанотехнологии в медицине сегодня и завтра. Альманах клинической медицины. 2010; (22): 10–16. 31. Свирщевская Е.В., Гриневич Р.С., Решетов П.Д. с соавт. Наноносители лекарств на основе хитозана. Биотехносфера. 2012; (1): 13–20. 32. Jampilek J., Kralova K. Advances in nanostructures for antimicrobial therapy. Materials (Basel). 2022; 15(7): 2388. https://dx.doi.org/10.3390/ma15072388 33. Cardos I.A., Zaha D.C., Sindhu R.K., Cavalu S. Revisiting therapeutic strategies for H. pylori treatment in the context of antibiotic resistance: Focus on alternative and complementary therapies. Molecules. 2021; 26(19): 6078. https://dx.doi.org/10.3390/molecules26196078. 34. Gonçalves I.C., Henriques P.C., Seabra C.L., Martins M.C. The potential utility of chitosan micro/nanoparticles in the treatment of gastric infection. Expert Rev Anti Infect Ther. 2014; 12(8): 981–92. https://dx.doi.org/10.1586/14787210.2014.930663. 35. Nag M., Lahiri D., Mukherjee D. et al. Functionalized chitosan nanomaterials: A jammer for quorum sensing. Polymers (Basel). 2021; 13(15): 2533. https://dx.doi.org/10.3390/polym13152533. 36. Patel J., Patil P. Preparation and characterization of amoxicillin mucoadhesive microparticles using solution-enhanced dispersion by supercritical CO2. J Microencapsul. 2012; 29(4): 398–408. https://dx.doi.org/10.3109/02652048.2012.655329. 37. Jain S.K., Jangdey M.S. Lectin conjugated gastroretentive multiparticulate delivery system of clarithromycin for the effective treatment of Helicobacter pylori. Mol Pharm. 2009; 6(1): 295–304. https://dx.doi.org/10.1021/mp800193n. 38. Ramteke S., Ganesh N., Bhattacharya S., Jain N.K. Amoxicillin, clarithromycin, and omeprazole based targeted nanoparticles for the treatment of H. pylori. J Drug Target. 2009; 17(3): 225–34. https://dx.doi.org/10.1080/10611860902718649. 39. Zhang Q., Wu W., Zhang J., Xia X. Eradication of Helicobacter pylori: The power of nanosized formulations. Nanomedicine (Lond). 2020; 15(5): 527–42. https://dx.doi.org/10.2217/nnm-2019-0329. 40. Vala A.K., Trivedi H., Gosai H. et al. Biosynthesized silver nanoparticles and their therapeutic applications. In: Comprehensive Analytical Chemistry. Elsevier. 2021: Vol 94; 547–84. https://dx.doi.org/10.1016/bs.coac.2020.12.010. 41. Gurunathan S., Jeong J.K., Han J.W. et al. Multidimensional effects of biologically synthesized silver nanoparticles in Helicobacter pylori, Helicobacter felis, and human lung (L132) and lung carcinoma A549 cells. Nanoscale Res Lett. 2015; 10: 35. https://dx.doi.org/10.1186/s11671-015-0747-0. 42. Mikhailova E.O. Silver Nanoparticles: Mechanism of action and probable bio-application. J Funct Biomater. 2020; 11(4): 84. https://dx.doi.org/10.3390/jfb11040084. 43. Saravanan M., Gopinath V., Chaurasia M.K. et al. Green synthesis of anisotropic zinc oxide nanoparticles with antibacterial and cytofriendly properties. Microb Pathog. 2018; 115: 57–63. https://dx.doi.org/10.1016/j.micpath.2017.12.039. 44. Chen R., So M.H., Yang J. et al. Fabrication of bismuth subcarbonate nanotube arrays from bismuth citrate. Chem Commun (Camb). 2006; (21): 2265–67. https://dx.doi.org/10.1039/b601764a. 45. Zhu X., Su T., Wang S. et al. New advances in nano-drug delivery systems: Helicobacter pylori and gastric cancer. Front Oncol. 2022; 12: 834934. https://dx.doi.org/10.3389/fonc.2022.834934.
Наталья Валерьевна Бакулина, д.м.н., профессор, зав. кафедрой внутренних болезней, клинической фармакологии и нефрологии ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России. Адрес: 195067, г. Санкт-Петербург, Пискаревский пр., д. 47.
E-mail: nv_bakulina@mail.ru
ORCID: https://orcid.org/0000-0003-4075-4096
Инна Викторовна Савилова, к.м.н., ассистент кафедры внутренних болезней, клинической фармакологии и нефрологии ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России. Адрес: 195067, г. Санкт-Петербург, Пискаревский пр., д. 47.
E-mail: inna.savilova@gmail.com
ORCID: https://orcid.org/0000-0001-6463-6663
Елена Александровна Лутаенко, к.м.н., доцент кафедры внутренних болезней, клинической фармакологии и нефрологии ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России. Адрес: 195067, г. Санкт-Петербург, Пискаревский пр., д. 47.
E-mail: e-lutaenko@yandex.ru
ORCID: https://orcid.org/0000-0003-3472-3728
Дареджан Бичикоевна Цурцумия, к.м.н., доцент кафедры внутренних болезней, клинической фармакологии и нефрологии ФГБОУ ВО «Северо-Западный государственный медицинский университет им. И.И. Мечникова» Минздрава России. Адрес: 195067, г. Санкт-Петербург, Пискаревский пр., д. 47.
E-mail: D.Tcurtcumiya@szgmu.ru
ORCID: https://orcid.org/0000-0001-7806-9364